FINE MECHANICS & TOTAL Motion CONTROL

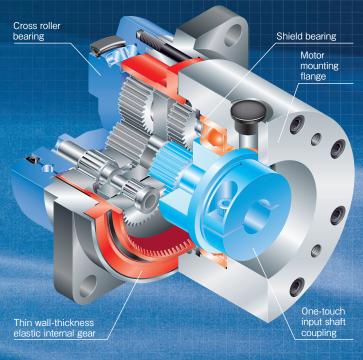
Harmonic Planetary ® Harmonic Drive®

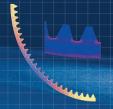
High-performance Gear Heads for Servo Motors series

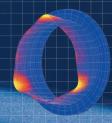
High-precision • Highly stiff • High positioning precision

Establishment of high-performance Gear Head Series

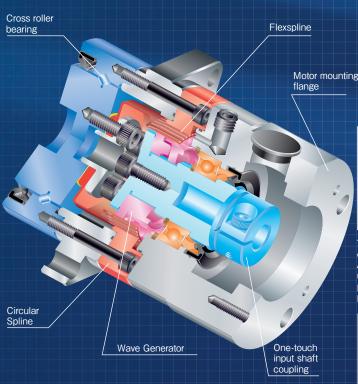
High-performance Gear Heads for Servo Motors Series


The high-performance gear head for servo motors boasts wider range of reduction ratio from low reduction ratio to high reduction ratio and wider range of torque capacity similarly to Harmonic Plaetary® (high-precision planet gear speed reducer) and HarmonicDrive® (strain wave gearing device). The main bearing unit mechanism by using the cross roller bearing can directly support the external load. Only by simple one-touch installation, the high precision actuator becomes available to meet various needs in wider range of fields.


Harmonic Planetary HPGP / HPG Series



The thin wall-thickness elastic gear technology of HarmonicDrive® is used in the internal gears of planet gear speed reducers. It allowed internal gears deform elastically to reduce backlash without installing an adjustment mechanism.



The planet gear speed reducer features simultaneous meshing between the sun gear and planet gear and between the planet gear and internal gear. Reducing backlash only by dimensional precision of parts causes interference of meshing parts due to dimensional errors, resulting in uneven rotational torque and noise. The thin wall-thickness elastic internal gear featuring a function to mitigate interference between meshing parts and an adequate strength has been developed to solve these problems. The new planet gear speed reducers in the Harmonic Planetary® series incorporate this internal gear as an epoch-making structure, scarcely causing backlash variations within the speed reducer life

- ♦Small backlash: Less than 3 min. (Less than 1 min. with customized products)
- ♦Low Reduction ratio: 1/3 to 1/50
- ♦High efficiency more than 90% (85% on models No. 11 and 14)
- ♦High load capacity by integrating structure with cross roller bearing
- ♦High-torque capacity

Harmonic Drive R CSG/CSF-GH Series

HarmonicDrive® is a strain wave gearing with a unique operating principle which applied elastic mechanics of metals, and a reducer for precision control which consists of only 3 basic parts to provide high rotational precision and positioning.

Wave Generator

The Wave Generator is a thin raced ball bearing fitted onto an elliptical hub. Inner lace of bearing is fixed to tha cam, but, but loss deferme electrically in outer lace deforms elastically via balls. Generally mounted onto balls. Generally the input shaft.

Flexspline

Flexspine
The Flexspline is a non-rigid,
thin cylindrical cup with
external teeth. The bottom of
Flexpline (bottom of cylindrical
cup) is called diaphram and
generally mounted onto the
output shaft.

Circular Spline

The Circular Spline is a rigid ring with internal teeth, engaging the teeth of the Flexspline across the major axis of the Wave Generator. The Circular Spline has two more teeth than the Flexspline and is generally mounted onto

The greatest characteristic of Harmonic Drive® as "strain wave gearing" is the ease of downsizing and weight saving as it consists of only three basic parts. As it has many teeth, it generates greater torque and allows very accurate repeatability. By developing an IH tooth profile invented from our own tooth profile theory, we have improved the intensity and performance of the product

- ♦Non-backlash
- ♦High Reduction ratio: 1/50 to 1/160
- ♦High positioning precision (repetitive positioning ±4 to ±10arc-sec)
- High load capacity by integrating structure with cross roller bearing
- ♦High-torque capacity

Harmonic Planetary[®]

HPGP/HPG Series (Planet gear speed reducer)

Model :11, 14, 20, 32, 50, 65 (6 models)

Applicable motor capacity: 10W to 15kW

Permissible peak torque :3.9N·m to 2920N·m

Flange shaft type

Harmonic Drive[®]

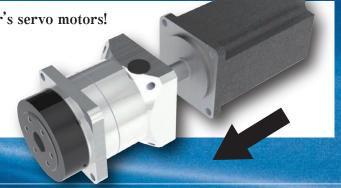
CSG/CSF-GH Series (HarmonicDrive®speed reducer)

Model :14, 20, 32, 45, 65 (5 models)

Applicable motor capacity :30W to 5kW

Permissible peak torque :18N·m to 3419N·m

With output shaft type


Simple one-touch installation to each manufacturer's servo motors! High-precision actuator can be provided.

Applicable servo motor manufacturers

For other servo motors, please feel free to contact the nearest sales office.

Yasukawa Electric, Mitsubishi Electric, Fanuc, Panasonic, Sanyo Denki, Tamagawa Seiki, Fuji Electric, Omron, Toshiba Machine, Keyence, etc.

* See the model selection tool on the web page to find matching model on each company's servo motors (URL:https://hds-tech.ip/)

Line up

Gear Head Series

HPGP Series
High-torque Type
(Permissible peak torque
10N·m to 2920N·m)
Life:
20,000 hours

H	. D	lanetary*
Llarm	юпісГ	lanetary "

Model	Delivery time (5 units or less)*1	Dimensional outline (mm)		Back Standard 3 min.		Silent Spec. NR6 (6 min.)	Motor Small • Medium
11		□40	5,21,37,45	0			10W to 200W
14,20,32	4	□60,□90,□120	E 44 4 E 04 00 4 E	0		0	30W to 4kW
50	4 weeks ☐170	□170	5,11,15,21,33,45	0	0	0	500W to 10kW
65		□230	4,5,12,15,20,25	0		<u> </u>	1.3kW to 15kW

^{*1} Delivery time for catalog standard items with backlash of 3 min. For customized products (backlash of 1 min) or 6 or more units, please contact us.

HPG Series Helical Gear Type (Permissible peak torque 5N·m to 400N·m) Life: 20,000 hours

New Harmonic Planetary *	

	Model	Delivery time	Dimensional outline	Reduction ratio	Backlash*2		Motor
	Model	(5 units or less)*1	(mm)	neuuciioii raiio	Standard 3 min.	Special 1 min.	Small • Medium
	11		□40	4,5,6,7,8,9,10	0		50W to 150W
ı	14	1	□60	3,4,5,6,7,8,9,10	0	0	100W to 400W
ſ	20	1 week	□90		0	0	200W to 1kW
ı	32		□120		0	0	750W to 5kW

^{*1} Delivery time for catalog standard items with backlash of 3 min. For customized products (backlash of 1 min) or 6 or more units, please contact us.

HPG Series Standard Type (Permissible peak torque 3.9N·m to 2200N·m) Life: 20,000 hours

Model	Delivery time	Dimensional outline	Reduction ratio	Backlash*2		Silent Spec.	Motor
Wodel	(5 units or less)*1	(mm)	neuuciioii raiio	Standard 3 min.	Special 1 min.	NR6 (6 min.)	Small • Medium
11	1 week	□40	5,9,21,37,45	0		- -	10W to 100W
14,20,32	1 week	□60,□90,□120	3,5,11,15,21,33,45	0			30W to 3.5kW
50	2 weeks	□170	3,5,11,15,21,55,45	0	0	0	500W to 10kW
65	4 weeks	□230	4,5,12,15,20,25,40,50	0	0	I - I	1.3kW to 15kW

HarmonicPlanetary®

CSG-GH Series High-torque Type (Permissible peak torque 23N·m to 3419N·m) Life: 10,000 hours

Model	Delivery time	Dimensional outline (mm)	Reduction ratio	Positioning precision repeatability (arc-sec)*1	Angle transmission precision (arc-min)*1	Motor Small • Medium
14		□60	50,80,100	±10	1.5	30W to 100W
20	Made-	□90		±8		100W to 400W
32	to-order	□120	50,80,100,120,160	±6	4.0	300W to 1.5kW
45	to-order	□170		±5	1.0	450W to 2kW
65		□230	80,100,120,160	±4		850W to 5kW

HarmonicDrive¹

^{*2} For details of positioning precision repeatability and angle transmission precision, refer to HPGP performance table on page 017.

^{*2} For details of positioning precision repeatability and angle transmission precision, refer to HPG performance table on page 027.

^{*1} Delivery time for catalog standard items with backlash of 3 min. For customized products (backlash of 1 min) or 6 or more units, please contact us.

^{*2} For details of positioning precision repeatability and angle transmission precision, refer to HPG performance table on page 035.

^{*1} For details of positioning precision repeatability and angle transmission precision, refer to CSG-GH performance table on page 051.

Variations (Model / Reduction ratio)

	Harmonic	HarmonicDrive*			
HPGP/HPG Model		Reducti	on ratio		CSG/CSF-GH Model
[Model / Size (mm)]	HPGP Series (High-torque Type)	HPG Series (Helical Gear Type)	HPG Series (Standard Type)	CSG/CSF-GH Series (High-torque / Standard)	[Model / Size (mm)]
11 / □40	5,21,37,45	4,5,6,7,8,9,10	5,9,21,37,45	_	_
14 / □60	5,11,15,21,33,45	3,4,5,6,7,8,9,10	3,5,11,15,21,33,45	50,80,100	14 ∕ □60
20 / □90	5,11,15,21,33,45	3,4,5,6,7,8,9,10	3,5,11,15,21,33,45	50,80,100,120,160	20 / □90
32 ∕ □120	5,11,15,21,33,45	3,4,5,6,7,8,9,10	3,5,11,15,21,33,45	50,80,100,120,160	32 / □120
50 ∕ □170	5,11,15,21,33,45		3,5,11,15,21,33,45	50,80,100,120,160	45 ∕ □170
65 ∕ □230	4,5,12,15,20,25	-	4,5,12,15,20,25,40,50	80,100,120,160	65 ∕ □230

CSF-GH Series Standard Type (Permissible peak torque 18N·m to 2630N·m) Life: 7,000 hours

mensiona outline Motor Small • Medium Positioning precision repeatability (arc-sec) Angle transmission Model Reduction ratio 14 50,80,100 □60 ±10 1.5 30W to 100W 90 100W to 200W Made-32 □120 50,80,100,120,160 300W to 1kW ±6 to-order 1.0 45 □170 ±5 □230 80,100,120,160 65 ±4 850W to 5kW

HarmonicDrive*

HPG Series Orthogonal Shaft Type (Permissible peak torque 150N·m to 2200N·m) Life:20,000 hours

Model	Daliyanı timatl	Dimensional outline	Doduction votice	Backlash*2		Motor	
Model	Delivery time*1	(mm)	Reduction ratio	Standard 3 min.	Special 1 min.	Small • Medium	
32,50	2 weeks	□120,□170	5,11,15,21,33,45	0		500W to 8kW	
65	4 weeks	□230	5,12,15,20,25,40,50	0	_	2kW to 8kW	

*1 Delivery time for catalog standard items.

Harmonic Planetary Unit Type

HPF Series Hollow Shaft Type (Permissible peak torque 100N·m to 220N·m) Life: 20,000 hours

Model	Delivery time*1	Dimensional outline (mm)	Hole diameter	Reduction ratio	Backlash*2	
25	2 weeks	φ136	φ25	11	3 minutes	
32	Z WEEKS	φ167	φ30	''	3 millules	

*1 Delivery time for catalog standard items.

HarmonicPlanetary®

HPG Series Input Shaft Type (Permissible peak torque 3.9N·m to 2200N·m) Life: 20,000 hours

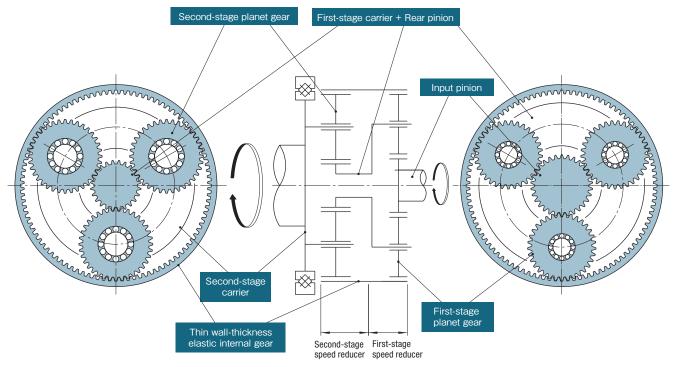
3.9N·m to 2200N·m)
Life:
20,000 hours
Harmonic Planetery 8

Model	Delivery time	Dimensional outline	Reduction ratio	Backlash*2		Silent Spec.
Wouei	(5 units or less)*1	(mm)	neuuciion raiio	Standard 3 min.	Special 1 min.	NR6 (6 min.)
11	1 week	□40	5,9,21,37,45	0		
14,20,32	1 week	□60,□90,□120	3,5,11,15,21,33,45	0	0	0
50	4 weeks	□170	3,5,11,15,21,55,45	0	0	
65	6 weeks	□230	4,5,12,15,20,25,40,50	0	0	

^{*1} Delivery time for catalog standard items with backlash of 3 min. For customized products (backlash of 1 min) or 6 or more units, please contact us.

^{*1} For details of positioning precision repeatability and angle transmission precision, refer to CSF-GH performance table on page 059

^{*2} For details of positioning precision repeatability and angle transmission precision, refer to HPG Orthogonal shaft type performance table on page 071.


^{*2} For details of positioning precision repeatability and angle transmission precision, refer to HPF Hollow shaft type performance table on page 082.

^{*2} For details of positioning precision repeatability and angle transmission precision, refer to HPG Input shaft type performance table on page 089.

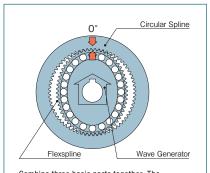
Operating Principle Harmonic Planetary®

Example with the dual-stage type speed reducing mechanism (reduction ratio 11 or more) is illustrated.

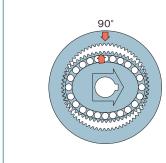
The operating principles for the single-stage type speed reducing mechanism (reduction ratios 3 to 9) are for the second-stage speed reducer only.

Second-stage speed reducer: A planetary speed reducing mechanism with three or four planet gears.

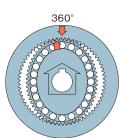
The second-stage pinion coupled with the first-stage carrier is input to the second-stage speed reducer and provides revolution motion to the second-stage planet gears as in the case of the first-stage speed reducer. The revolution motion is then transferred to the second-stage carrier (internal ring of cross roller bearing) for output.


The rotation direction at this time is the same as that of the first-stage speed reducer.

First-stage speed reducer: A planetary speed reducing mechanism with three planet gears.


Rotations driven by the input pinion transfer revolution motion to the first-stage planet gears that mesh with it. The revolution motion is then transferred to the first-stage carrier through the planetary shaft.

The rotation direction at this time is the same as that of input rotation.


Operating Principle Harmonic Drive®

Combine three basic parts together. The Flexspline is deformed by the Wave Generator. Thus, the teeth of the Flexspline engage with the Circular Spline at the long shaft part and disengage completely at the short shaft part.

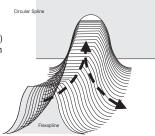
As the Wave Generator rotates clockwise while the Circular Spline is fixed in place, the Flexspline elastically deforms and engaging points of the teeth shift sequentially.

One Turn of Wave Generator

When the wave generator rotates through one turn (360°), the Flexspline moves counterclockwise by two teeth based on the difference in the number of teeth because the Flexspline has two teeth fewer than the Circular Spline. Normally, this motion is taken out as output.

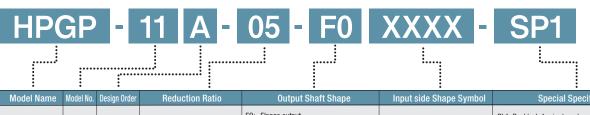
Rotational direction

The output rotational direction of CSG/CSF-GH series is reverse of the input rotational direction.

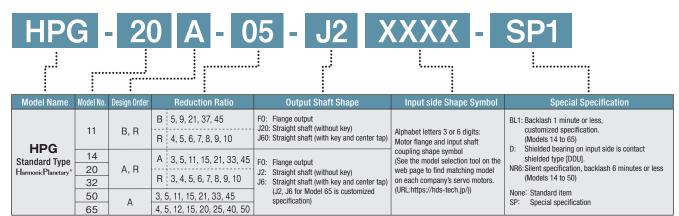

Input: Wave Generator (Motor shaft mounting)

Fixed: Circular Spline (Casing)

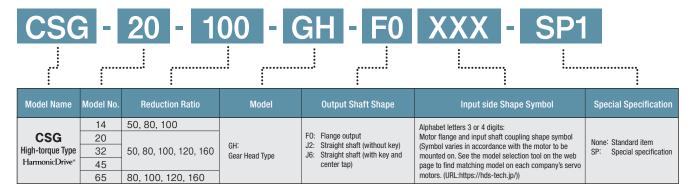
Output: Flexspline (Cross roller bearing)

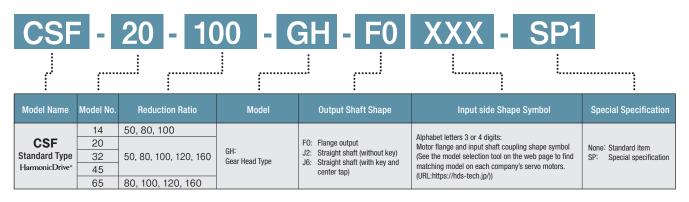

Tooth behavior and engagement

Unlike motions of ordinary gearing, the unique tooth behavior (operating principle) of HarmonicDrive® achieved non-backlash motion, infinitesimal angular feeding (one-pulse feeding) and high positioning repeatability. More than 30% of all teeth simultaneously engages in two locations in 180° symmetry, thereby allowing high-torque capability.

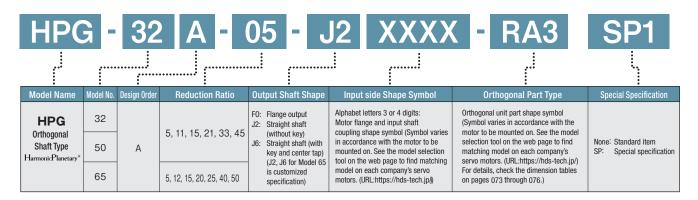


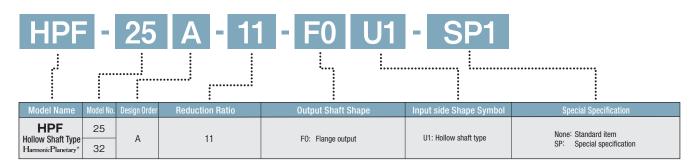
Form & Code

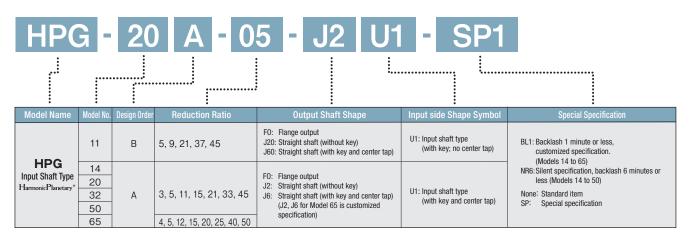

Gear Head Type



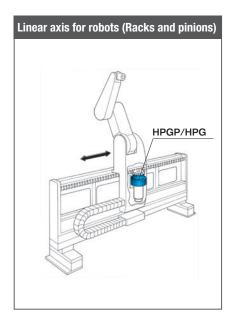
Model Name	Model No.	Design Order	Reduction Ratio	Output Shaft Shape	Input side Shape Symbol	Special Specification	
HPGP	11		5, 21, 37, 45	F0: Flange output J20: Straight shaft (without key) J60: Straight shaft (with key and center tap)	WOLDE HATISE AND HIPUL SHALL	Motor flange and input shaft	BL1: Backlash 1 minute or less, customized specification. (Models 14 to 65)
High-torque Type	14	Α		FO: Flange output	coupling shape symbol (See the model selection tool on the	D: Shielded bearing on input side is contact shielded type [DDU].	
HarmonicPlanetary*	20		5. 11. 15. 21. 33. 45 J ²	J2: Straight shaft (without key) J6: Straight shaft (with key and center tap) (J2, J6 for Model 65 is customized	web page to find matching model on each company's servo motors. (URL:https://hds-tech.jp/))	NR6: Silent specification, backlash 6 minutes or less	
	32 50					(Models 14 to 50)	
						None: Standard item	
	65		4, 5, 12, 15, 20, 25	- specification)		SP: Special specification	

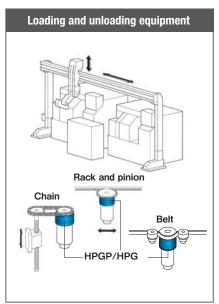

^{*} Design order: R indicates helical gear type.

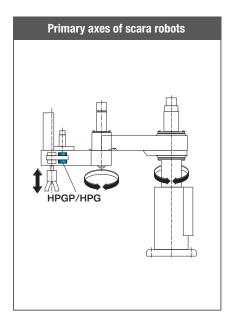


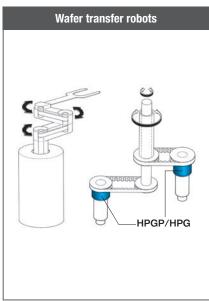

Form & Code

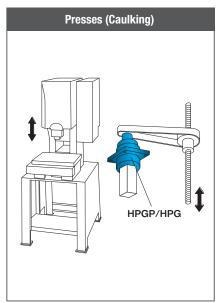
Gear Head Type Orthogonal Shaft Type

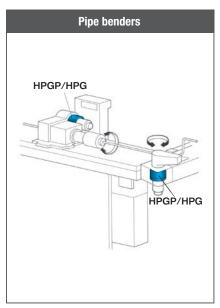

Unit Type

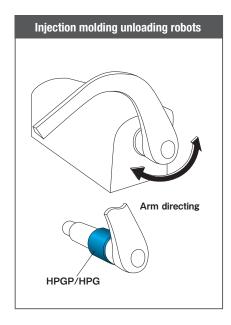


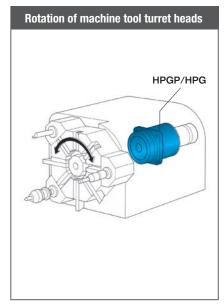


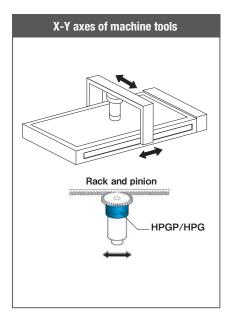

Application Examples (HPGP/HPG Series)

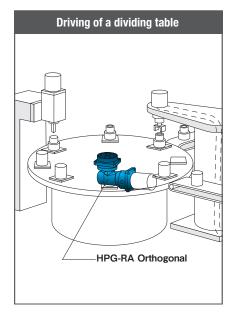

The Harmonic Planetary® HPGP/HPG series is especially suitable for a wide range of high technology fields requiring precision motion control such as the semiconductor or LCD production equipment, robot and machine tool industries.

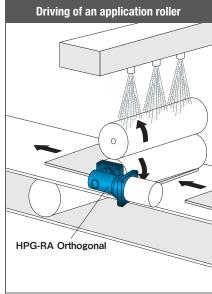


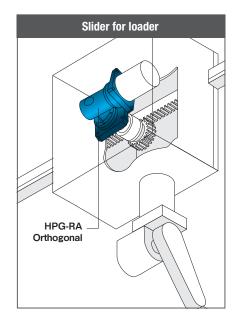


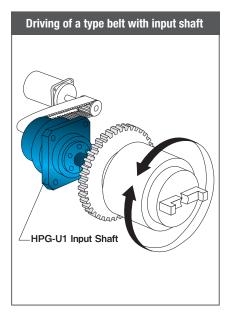


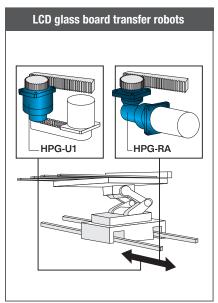


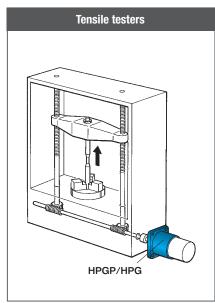


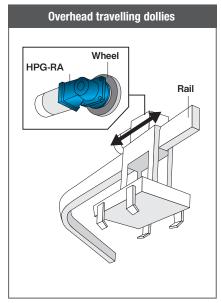


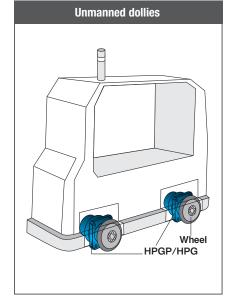


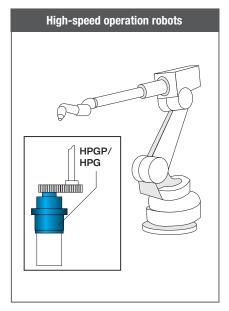

Application Examples (HPGP/HPG Series)

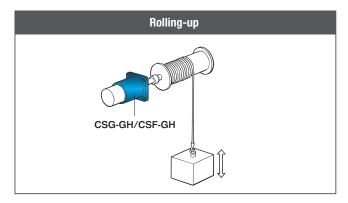

The Harmonic Planetary® HPGP/HPG series is especially suitable for a wide range of high technology fields requiring precision motion control such as the semiconductor or LCD production equipment, robot and machine tool industries.

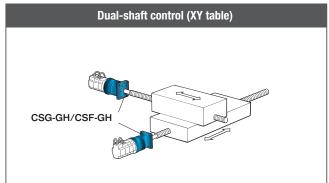


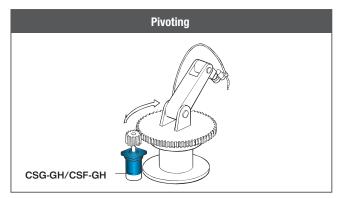


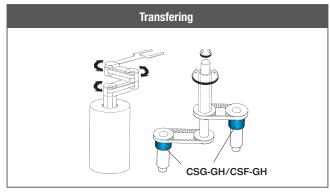


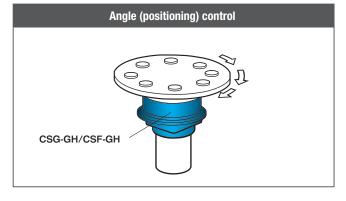


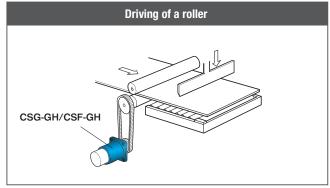


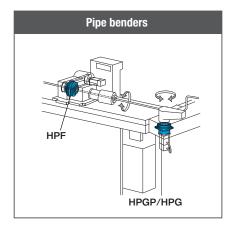


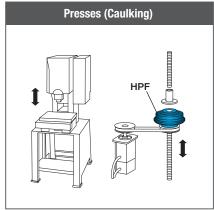


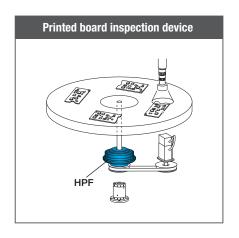

Application Examples (CSG-GH/CSF-GH Series) ■


The HarmonicDrive® CSG-GH/CSF-GH series is especially suitable for a wide range of high technology fields requiring precision motion control such as the semiconductor or LCD production equipment, robot and machine tool industries.









Application Examples (HPF Series) :

The superior performance and specifications of HPG series has been succeeded. Additionally, a hollow-shaft mechanism has been newly introduced to enjoy the shape advantage. The pass-through hole with the coaxial input and output shaft provides the compactly-designed devices to meet diversified customer needs, such as passing through the piping, wiring, and laser light or combining with a ball screw.

Gear Head Series CONTENTS

HarmonicPlanetary® HPGP Series

Structural Drawing	013
Model Number Selection	014
Rating Table • Performance Table • • • • • • • • • • • • • • • • • • •	017
Torque - Torsion Characteristic	018
Dimensional Outline Drawing	019

Harmonic Planetary BHPG Series Helical Gear Type

Rating Table • Performance Table · · · · · · · · · · 026 •	027
Torque - Torsion Characteristic	028
Dimensional Outline Drawing	029

HarmonicPlanetary® HPG Series Standard Type

Rating Table • Performance Table · · · · · · · · · · · · · · · · · · ·	035
Torque - Torsion Characteristic	
Dimensional Outline Drawing	037

HarmonicDrive® CSG-GH Series High-torque Type

Structural Drawing	043
Terms on the Rating Table • On Life • On Intensity 044 •	045
On Rigidity • On Vibration • Efficiency Characteristics ······ 046 •	047
Model Number Selection048 •	049
Rating Table • Racheting Torque • Buckling Torque ······	050
Performance Table	051
Rigidity (Spring constant) • Hysteresis Loss • Max. Backlash Quantity	052
Dimensional Outline Drawing	053

HarmonicDrive® CSF-GH Series Standard Type

Rating Table • Racheting Torque • Buckling Torque · · · · · · · · · · · · · · · · · · ·	058
Performance Table · · · · · · · · · · · · · · · · · · ·	059
Rigidity (Spring constant) • Hysteresis Loss • Max. Backlash Quantity \cdots	060
Dimensional Outline Drawing	061

Harmonic Planetary B HPGP/HPG Series

Size

Model: 11, 14, 20, 32, 50, 65

Peak torque

HPGP series: 10 N·m to 2920 N·m

HPG Series (Helical Gear Type) : 5 N·m to 400 N·m HPG series (Standard Type) : 3.9 N·m to 2200 N·m

Reduction ratio

HPGP series: 1/5 to 1/45

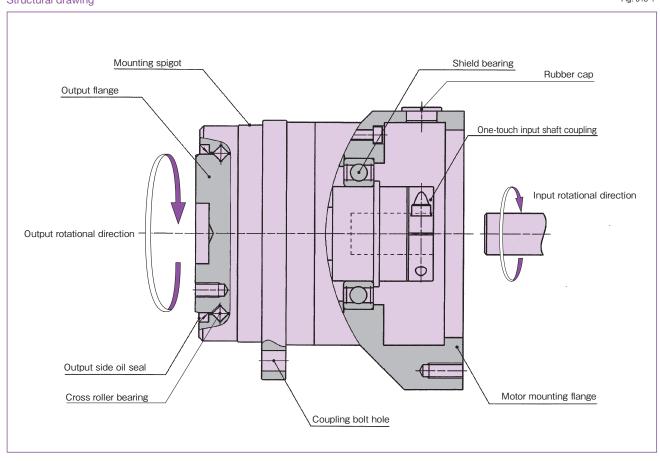
HPG Series (Helical Gear Type) : 1/3 to 1/10 HPG series (Standard Type) : 1/3 to 1/50

Small backlash

Standard: 3 min. or less Customized: 1 min. or less

High efficiency

90% or higher (85% for Models 11 and 14)

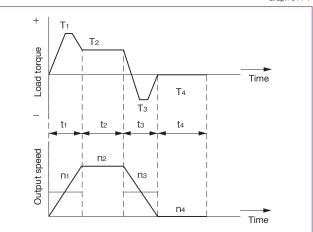

Can be mounted to servo motors of many manufacturers

Yasukawa Electric, Mitsubishi Electric, Fanuc, Panasonic, Sanyo Denki, Tamagawa Seiki, Fuji Electric, Omron, Toshiba Machine, Keyence, and other For other servo motors, please feel free to contact the nearest

* See the model selection tool on the web page to find matching model on each company's servo motors. (URL:https://hds-tech.jp/)

Structural drawing Fig. 013-1

Model Number Selection (HPGP/HPG Series) =


Check your operating conditions and select suitable model Nos. based on the flowchart to fully demonstrate the excellent performance of the Harmonic Planetary® HPGP/HPG series.

In general, the servo system is rarely in a continuous constant load state. The load torque changes according to the input rotational speed variation and comparatively large torque are applied at start and stop. Unexpected impact torque may be applied. Check your operating conditions against the following load torque pattern and select suitable model Nos. based on the flowchart shown on the right. Also check the life and static safety coefficient of the cross roller bearing and input side main bearing (input shaft type only). (See the specification of the input side main bearing and the output side main bearing on pages 114 to 119.)

■ Checking the load torque pattern

First, you need to look at the picture of the load torque pattern. Check the specifications shown in the figure below.

Graph 014-1

Obtain the value of each load torque pattern.

Load torque T₁ to T_n (N·m) Time t1 to tn (sec) Output speed n1 to nn (r/min)

<Normal operation pattern>

Starting time T₁, t₁ n₁ Steady operation time T₂. t₂. n₂ Stopping (slowing) time T₃, t₃, n₃ Break time T4, t4 n4

<Maximum rotational speed>

Max. output rotational speed no $max \ge n_1$ to n_n $ni max \ge n1 \times R to nn \times R$ Max. input rotational speed (Restricted by motors) R: Reduction ratio

<Impact torque>

When impact torque is applied

<Required lifespan>

 $L_{10} = L$ (hours)

Flowchart of model number selection

Select a model number according to the following flowchart. If you find a value exceeding that from the ratings, you should review it with the upper-level model number or consider reduction of conditions including the load torque.

Calculate the average load torque applied on the output side from the load torque pattern: Tav (N·m) $\frac{10/3}{|n_1| \cdot t_1 \cdot |T_1|^{10/3} + |n_2| \cdot t_2 \cdot |T_2|^{10/3} + \cdots + |n_n| \cdot t_n \cdot |T_n|}$

 $n_1 \cdot t_1 + n_2 \cdot t_2 + \cdot \cdot \cdot \cdot + n_n \cdot t_n$ Calculate the average output speed based on the load torque pattern: no av (r/min)

 $|\underline{n_1|\cdot t_1} + |\underline{n_2|} \cdot t_2 + \cdots + |\underline{n_n|} \cdot t_n$

Select a model number temporarily with the following condition: $Tav \le Average load torque$ (See the rating table on page 016)

Check the description in Caution below.

Review of the operation conditions, model No and reduction ratio.

Determine the reduction ratio (R) based on the maximum output rotational speed (no max) and maximum input rotational speed (ni

ni *max* no max

(A limit is placed on ni max by motors.)

Calculate the maximum input rotational speed (ni max) from the maximum output rotational speed (no max) and the reduction ratio (R).

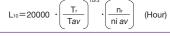
ni *max*=no *max*⋅R

Calculate the average input rotational speed (ni av) from the average output rotational speed (no av) and the reduction ratio (R): ni av = no

av·R ≦ Permissible average input rotational speed (n_r).

Check whether the maximum input rotational speed is equal to or less than the values in the rating table. ni $max \leq maximum$ input rotational speed (r/min)

Check whether T_1 and T_3 are equal to or less than the permissible peak torque (N·m) value at start and stop from the ratings.


Check whether Ts is equal to or less than the permissible maximum momentary torque ($N \cdot m$) value from the ratings.

Calculate the lifetime and check whether it meets the specification requirement

Tr: Output torque

nr: Permissible average input rotational speed

The model number is determined.

Caution

Check impacts by speed reducer temperature rise, vibration during acceleration and deceleration and other factors if the operating conditions are as specified below. Study to "increase the speed reducer size", "review the operating conditions" and other means if it becomes necessary to study safety. Exercise reasonable caution especially when operating conditions are close to continuous operation.

Average load torque (Tav) > Permissible maximum value of average load torque (see page 016) Calculate average input rotational speed (ni av) > Permissible average input rotational speed (nr)

Example of Model Number Selection

Value of each load torque pattern.

Load torque Tn (N·m) tn (sec) Output rotational speed nn (r/min)

Max. output rotational speed Max. input rotational speed

no max = 120 r/minni max = 5.000 r/min(Restricted by motors)

<Normal operation pattern>

Starting time $T_1 = 70 \text{ N} \cdot \text{m}$, $t_1 = 0.3 \text{ sec}$, $t_2 = 60 \text{ r/min}$

Steady operation time $T_2 = 18 \text{ N} \cdot \text{m}$, $t_2 = 3 \text{ sec}$, $n_2 = 120 \text{ r/min}$ Stopping (slowing) time $T_3 = 35 \text{ N} \cdot \text{m}$, $t_3 = 0.4 \text{ sec}$, $n_3 = 60 \text{ r/min}$

Break time $T_4 = 0 \text{ N} \cdot \text{m}, t_4 = 5 \text{ sec}, n_4 = 0 \text{ r/min}$ <Impact torque>

<Maximum rotational speed>

When impact torque is applied Ts = 180 N·m

<Required life> $L_{10} = 30,000 \text{ (hours)}$

Calculate the average load torque applied on the output side based on the load torque pattern; Tav (N·m),

$$\Gamma_{\text{AV}} = \underbrace{\sqrt{\frac{|60 \text{r/min}| \cdot 0.3 \text{sec} \cdot |70 \text{N} \cdot \text{m}|^{10/3} + |120 \text{r/min}| \cdot 3 \text{sec} \cdot |18 \text{N} \cdot \text{m}|^{10/3} + |60 \text{r/min}| \cdot 0.4 \text{sec} \cdot |35 \text{N} \cdot \text{m}|^{10/3}}_{|60 \text{r/min}| \cdot 0.3 \text{sec} + |120 \text{r/min}| \cdot 3 \text{sec} + |60 \text{r/min}| \cdot 0.4 \text{sec}}$$

Calculate the average output rotational speed based on the load torque pattern: no av (r/min)

 $|\:60r/\text{min}| \cdot 0.3\text{sec} + |\:120r/\text{min}| \cdot 3\text{sec} + |\:60r/\text{min}| \cdot 0.4\text{sec} + |\:0r/\text{min}| \cdot 5\text{sec}$ 0.3sec+3sec+0.4sec+5sec

Select a model number temporarily with the following conditions. T $av = 30.2 \text{ N} \cdot \text{m} \le 60 \text{ N} \cdot \text{m}$. (**HPG-20A-33** is temporarily selected based on the average load torque (see the rating table on page 016) of model No. 20 and reduction ratio of 33.)

Determine a reduction ratio (R) from the maximum output rotational speed (no max) and maximum input rotational speed (ni max).

5,000 r/min = 41.7≧33 120 r/min

Calculate the maximum input rotational speed (ni max) from the maximum output rotational speed (no max) and reduction ratio (R): ni max = 120 r/min·33=3,960 r/min

Calculate the average input rotational speed (ni av) from the average output speed (no av) and reduction ratio (R): ni av = 46.2 r/min·33 = 1,525 r/min≦ Permissible average input speed of model No. 20 3000 (r/min)

Check whether the maximum input rotational speed is equal to or less than the values specified in the rating table.

ni max = 3960 r/min ≤ 6000 r/min (maximum input rotational speed of model No. 20)

Check whether T₁ and T₃ are equal to or less than the peak torques (N·m) on start and stop in the rating table.

 $T_1=70~N\cdot m \leqq 100~N\cdot m$ (Peak torques on start and stop of model No. 20) $T_3=35~N\cdot m \leqq 100~N\cdot m$ (Peak torques on start and stop of model No. 20)

Check whether Ts is equal to or less than the values of the momentary max. torque (N·m) in the rating table. Ts = 180 N·m ≤ 217 N·m (momentary max. torque of model No. 20)

Calculate life and check whether the calculated life meets the requirement.

As a result of the preceding steps, HPG-20A-33 is determined.

Review of the operation conditions, model No and reduction ratio.

H9-9S0

CSF-GH

Rating Table (HPGP Series)

HPGP series gear head type has a variety of 6 model numbers. For selecting the model number, refer to the rating table.

Table 016-1

	Reduction	Rated output		Permissi	ble max. ave. load	Permissible peak					Permissible max. input	Inertia mor value on ir	ment (equiv. nput side) *7	Ма	ss ^{*8}																																																						
Model	ratio	torq	ue ^{*1}		ue ^{*2}	torque at start/stop "3		momentar	momentary torque ^{*4}		momentary torque *		rotational speed *6	Shaft output	Flange output	Shaft output	Flange output																																																				
		N⋅m	kgf∙m	N⋅m	kgf∙m	N·m	kgf⋅m	N⋅m	kgf⋅m	r/min	r/min	×10 ⁻⁴ kg·m ²	×10 ⁻⁴ kg⋅m²	kg	kg																																																						
	5	3.4	0.35	6.7	0.68	10	1.0					0.0040	0.0024	0.18	0.14																																																						
11	21							20	2.0	3000	10000	0.0019	0.0018																																																								
''	37	4.6	0.47	8	0.82	13	1.3	20	2.0	3000	10000	0.00069	0.00066	0.24	0.20																																																						
	45											0.00050	0.00048																																																								
	5	7.8	0.80	17	1.7							0.023	0.017	0.54	0.42																																																						
	11	10	1.0									0.019	0.018																																																								
14	15	12	1.2			30	3.1	56	5.7	3000	6000	0.017	0.016																																																								
14	21	12	1.2	20	2.0	30	3.1	30	3.7	3000	0000	0.0093	0.0090	0.63	0.51																																																						
	33	13	1.3									0.0030	0.0029																																																								
	45	13	1.3									0.0028	0.0027																																																								
	5	21	2.1	47	4.8	[0.20	0.16	1.6	1.2																																																						
	11	26	2.7	60	6.1	ļ						0.17	0.17																																																								
20	15	32	3.3	70	7.1	133	133	14	217	22	3000	6000	0.16	0.15	1.9	1.5																																																					
20	21	33	3.4	73	7.4			100	100	100	100	'-	'''	22	3000	0000	0.073	0.071																																																			
	33	39	4.0	80	8.2								0.030	0.029	2.0	1.6																																																					
	45	39										0.023	0.022	1.9	1.5																																																						
	5	87	8.9	200 20							1.1	0.8	4.4	3.0																																																							
	11	104	11		23	400						1.1	1.0																																																								
32	15	122	12	226			400	41	650	66	3000	6000	0.77	0.74	5.1	3.7																																																					
32	21	130	13					400	400	400	400	400	400	+50	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	41	400	400	400	430	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400 41	41	41	41	41	650	00	3000	0000	0.37	0.35		
	33	143	15	266	27								0.17	0.17	5.4	4.0																																																					
	45	143	13	200								0.12	0.12	5.1	3.7																																																						
	5	226	23	452	46	[6.2	4.9	13	10																																																						
	11	266	27	532	54	ļ						4.2	4.0																																																								
50	15	306	31	600	61	1130	115	1850	189	2000	4500	3.7	3.5																																																								
30	21	346	35			1130	113	1050	1850 189	2000	4500	1.7	1.6	15	12																																																						
	33	250	37	665	68							0.75	0.72																																																								
	45	359	31									0.52	0.50																																																								
	4	665	68	1200	122	0000					2500	46 ^{*9}	31	20°9	22																																																						
	5	705	72	1330	136							30 ^{*9}	21	32*9																																																							
65	12	798	81	1460	60 149		298	4500	459	2000		22 ^{*9}	20																																																								
65	15	971	99	1730	177	2920	298	4500	459	2000	3000	20 ^{⁺9}	19	47 ^{*9}	07																																																						
	20	1060	108	0000	004							7.8 ^{*9}	7.3	4/-	37																																																						
	25	1130	115	2000	204												7.2 ^{*9}	6.8																																																			
(Note) 1 O	Note) 1. Output torque set based on the life of L to = 20000 hours when input rotational speed is 3000 r/min, which is the rated rotational speed of ordinary servo motors																																																																				

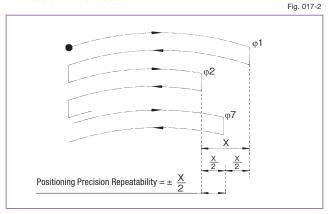
- (Note) 1. Output torque set based on the life of L10 = 20000 hours when input rotational speed is 3000 r/min, which is the rated rotational speed of ordinary servo motors. Models 50 and 65 are set at 2000 r/min as the rated rotational speed and at L10 = 20000 hours as the life for the servo motor to be combined.
 - 2. Permissible maximum value of average load torque calculated based on a load torque pattern (page 014). A life of 2000 hours or more is a criterion when operated at an input speed of 2000 r/min.
 - 3. Permissible maximum value of torque applied on start and stop in operation cycles.
 - 4. Permissible maximum value for impact torque in an emergency stop and for external impact torque. Operation exceeding these ranges may cause damages to reducers.
 - 5. Permissible maximum value of average input rotational speed during operations. Make it a point to operate below this value especially when the operation mode is near continuous operation.
 - 6. Permissible maximum input rotational speed in operation modes other than continuous operation.
 - 7. The value for a speed reducer itself. Values that include the input shaft coupling are shown in the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - 8. The weight of a speed reducer itself. See measurement tables for values that include an input shaft coupling, motor flange and other parts.
 - 9. The standard specification is flange output. Shaft output is a customized specification.

Performance Table (HPGP Series)

The values in the table are for the HPGP reducer alone.

The input side shape may vary depending on the size of the mounted motor. For the input shaft coupling and motor flange values, please contact us.

Table 017-1


Model	Reduction ratio	Angle transmission precision 1		Repeatability 2	Starting torque ³		Overdrive sta	rting torque *4	No-load runi	ning torque *5																	
Wiodei	ricadction ratio	arc-min	×10⁻⁴rad	arc-sec	cN⋅m	kgf∙cm	N⋅m	kgf·m	cN·m	kgf-cm																	
	5	Į			4.0	0.41	0.20	0.020	5.0	0.51																	
11	21	5	14.5	±30	2.9	0.29	0.60	0.061	1.3	0.13																	
l ''	37]	14.5	±30	1.6	0.17	0.00	0.062	0.90	0.092																	
	45				1.4	0.15	0.64	0.066	0.80	0.082																	
	5				8.6	0.88	0.43	0.044	9.8	1.0																	
	11				8.0	0.82	0.90	0.092	4.9	0.50																	
14	15	4	11.6	±20	7.4	0.75		0.11	2.9	0.30																	
14	21	-	11.6	±20	5.2	0.53	1.1		2.9	0.30																	
	33				3.3	0.34	1.1	0.12	0.0	0.20																	
	45				2.4	0.25			2.0	0.20																	
	5				19	1.9	0.93	0.095	28	2.9																	
	11				15	1.6	1.7	0.17	15	1.5																	
20	15	4	11.6	.15	12	1.2	1.8	0.18	11	1.1																	
20	21	4	11.6	±15	9.3	0.95	2.0	0.20	8.8	0.90																	
	33				6.4	0.65	0.1	0.22	5.9	0.60																	
	45				4.7	0.48	2.1		4.9	0.50																	
	5			±15	33	3.4	1.7	0.17	73	7.4																	
	11				27	2.7	2.9	0.30	38	3.9																	
20	15	4			25	2.5	3.7	0.38	29	3.0																	
32	21		11.6		22	2.3	4.7	0.48	24	2.4																	
	33																						15	1.5	4.8	0.49	14
	45				11	1.2	5.1	0.52	13	1.3																	
	5				80	8.2	4.0	0.41	130	13																	
	11				45	4.6	5.0	0.51	60	6.1																	
50	15	3	8.7	±15	40	4.1	6.0	0.61	47	4.8																	
1 50	21]	0.7	±15	36	3.7	7.6	0.78	40	4.1																	
	33				24	2.4	7.8	0.80	24	2.5																	
	45				20	2.0	8.9	0.91	20	2.0																	
	4				288	29	10	1.0	420	43																	
	5				240	24	12	1.2	360	37																	
C.F.	12	12 15 3 8.7 ±15	.45	125	13	15	1.5	190	19																		
65	15		±15	110	11	17	1.7	160	16																		
	20				95	10	19	1.9	130	13																	
	25				84	8.6	21	2.1	110	11																	

(Note) 1. Angle transmission precision indicates the difference between (1) logical rotating angle and (2) actual rotating angle of output when any rotating angle is given as an input.

The values in the table are maximum values.

2. The repeatability is determined by repeating positioning in a given position from the same direction seven times, by measuring stop positions of the output shaft and by calculating the maximum difference. Measured values are indicated in angles (degrees) and are prefixed with "±" to 1/2 of the maximum differences. The values in the table are maximum values.

Starting torque means the momentary "starting torque" with which the output side starts rotation when a torque is applied on the input side. The values in the table are maximum values.

Table 017-2

Load	No load
HPGP speed reducer surface temperature	25°C

4. Overdrive starting torque means the momentary "starting torque" with which the input side starts rotation when a torque is applied on the output side. The values in the table are maximum values.

lable	01	7-3	
		$\overline{}$	

Load	No load
HPGP speed reducer surface temperature	25°C

No-load running torque means the torque on the input side required to put the speed reducer under a no-load condition. The values in the table are average values.

cs.	
Table	017-4

Input speed	3000 r/min
Load	No load
HPGP speed reducer surface temperature	25°C

Torque - Torsion Characteristic (HPGP Series)

■Gear Head Type Standard Item

		•				1	āble 018-1
Model	Reduction	Bacl	klash		antity on one Fr x 0.15	Torsiona	al rigidity
Model	Ratio)	A	
		arc-min	×10 ⁻⁴ rad	arc-min	×10 ⁻⁴ rad	kgf·m/arc-min	×100N·m/rad
	5			2.5	7.3		
11	21	3.0	8.7			0.065	22
- 11	37	3.0	0.7	3.0	8.7	0.003	22
	45						
	5	ļ		2.2	6.4		
	11						
14	15	3.0	8.7			0.14	47
	21			2.7	7.9		
	33						
	45			4.5	4.4		
	5 11	ł	8.7	1.5	4.4		
	15	3.0					
20	21			2.0	5.8	0.55	180
	33	ł		2.0	3.6		
	45	i					
	5			1.3	3.8		
	11	i		1.0	0.0		
	15						
32	21	3.0	8.7	1.7	4.9	2.2	740
	33	1					
	45						
	5			1.3	3.8		
	11	[
50	15	3.0	8.7			14	4700
50	21		0.7	1.7	4.9	'7	4700
	33						
	45						
	4			1.3	3.8		
	5						
65	12	3.0	8.7			38	13000
	15			1.7	4.9		

■ Gear Head Type BL1 Specification (backlash of 1 min. or less)

Model	Reduction Ratio	Back	klash	side at 1	antity on one Fr x 0.15	Torsiona	l rigidity
		arc-min	×10 ⁻⁴ rad	arc-min	×10 ⁻⁴ rad	kgf·m/arc-min	×100N·m/rad
	5			1.1	3.2		
14	11 15 21	1.0	2.9	1.7	4.9	0.14	47
	33 45						
	5			0.6	1.7		
20	11 15	1.0	2.9			0.55	180
20	21	1.0	2.9	1.1	3.2	0.55	160
	33						
	45 5			0.5	1.5		
	11		2.9	0.0	1.0		
32	15	1.0				2.2	740
	21 33		2.9	1.0	2.9		
	45						
	5			0.5	1.5		
	11						
50	15 21	1.0	2.9	1.0	2.9	14	4700
	33			1.0	2.5		
	45						
	4 5			0.5	1.5		
65	12	1.0	2.9			38	13000
	15 20 25			1.0	2.9		
						-	

■ Torsional rigidity (windup curve)

Anchoring the speed reducer input and casing and applying a torque to the output part will generate torsion in the output part in accordance with the applied torque. Change the torque slowly in the order of: (1) Forward output torque, (2) Zero, (3) Reverse output torque, (4) Zero and (5) Forward output torque. A loop of (1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) (return to (1)) will be drawn in Fig. 018-1. The inclination in the region from "0.15 x output torque" to "Output torque" is small. The torsional rigidity of the HPGP series is an average value of this inclination.

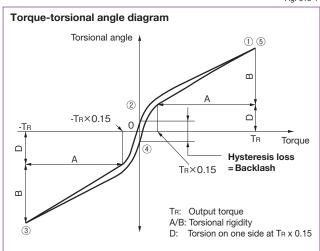
The inclination in the region from "zero torque" to "0.15 x output torque" is large. This is caused by uneven distribution such as fine uneven contact of the engaging parts and load of the planet gears under a light load.

■Calculation of total torsional quantity (Windup)

The method to calculate the total torsional quantity (average value) on one side when the speed reducer applies a load in a no-load state.

Formula 018-1

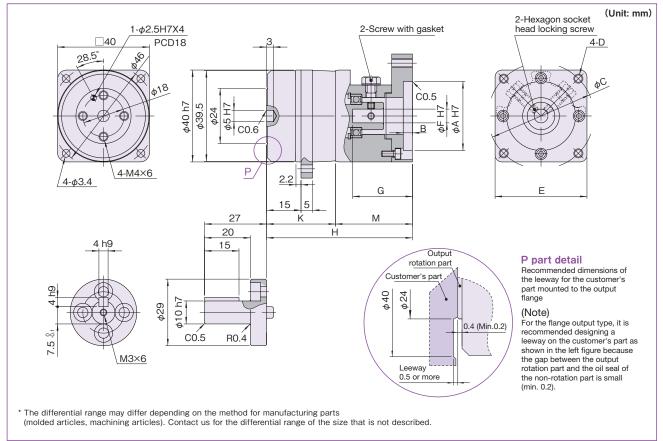
Calculation formula


Calcula	ation formula	
	$\theta = D + \frac{T - TL}{\frac{A}{B}}$	
Symbols	in calculation formula	
θ	Total torsional quantity	
D	Torsional quantity on one side at output torque x 0.15 torque	See Fig. 018-1, Table 018-1, Table 018-2
T	Load torque	_
TL	Output torque x 0.15 torque (=T _R x 0.15)	See Fig. 018-1 Table 018-1 to 2
A/B	Torsional rigidity	

■Backlash (Hysteresis loss)

The zero-torque width (2) - (4) in Fig. 018-1 "Torque-torsional angle diagram" is called a hysteresis loss. The hysteresis loss between "Forward output torque" and "Reverse output torque" is defined as backlash of the HPGP series. At the time of pre-shipment factory inspection, the backlash of the HPGP series is less than 3 minutes (1 minute or less for customized products).

Fig. 018-1


Table 018-2

Dimensional Outline Drawing - Model No. 11 (HPGP Series)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications.

Fig. 019-1

Measurement Table **_____**

Table 019-1 Unit: mm

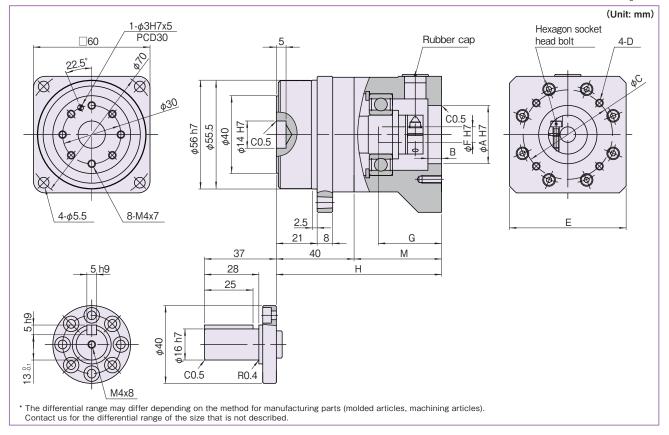
	Shape						F(H7)					Mass	(kg) *2	
	symbol "1	A(H7)	В	С	D	Е	Min	Max	G	Н	K	М	Shaft output	Flange output
	AA□	28		33	M2.5×5	φ40			19.5	45.5		24.5	0.25	0.21
	AB□	20	3	28	φ3.4	□25			23.5	49.5		28.5	0.26	0.22
e e = 5)	AC□	22		43.8	Through				23.5	49.5		26.5	0.27	0.23
e sp typ atio	AD□	30		46	M4×9									
Single-stage speed reduction type (Reduction ratio = 5)	AE□	30	J	45	M3×9	□40	5	8			21		0.29	0.25
gle-s educ ducti	AN□	34		48	IVIOX9				28	E4 E		00.5		
Sing r	AF□		4	70	M4×9				20	54.5		33.5		
	AG□	50		70	M5×9	□60							0.34	0.30
	AH□			60	M4×9									
Эе	AA□	28		33	M2.5×5	φ40			16.5	54.5		24.5	0.31	0.27
n tyj 45)	AB□	20	3	28	φ3.4	□25			20.5	58.5		28.5	0.32	0.28
ectio	AC□	22		43.8	Through				20.5	56.5		26.5	0.33	0.29
redt = 21	AD□	30		46	M4×9	□40								
atio	AE□	30	J	45	M3×9	□40	5	8			30		0.35	0.31
s sp.	AN□	34	4	48	IVIOX9				25.5	63.5		33.5		
stage	AF□		4	70	M4×9				23.3	03.5		55.5		
Dual-stage speed reduction type (Reduction ratio = 21, 37, 45)	AG□	50		,,,	M5×9 □60							0.40	0.36	
ă	AH□			60	M4×9									

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.

Contact us for information on speed reducers only and on special installation method.

(Note) 1. A symbol for input shaft coupling is supplied in "


"in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 14 (HPGP Series)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications.

Fig. 020-1

Measurement Table _____

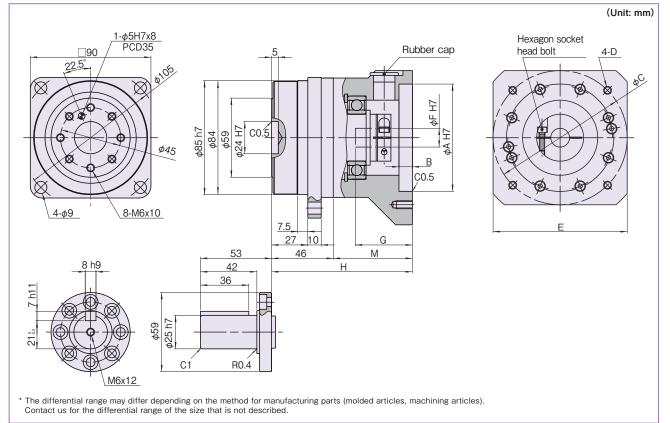
Table 020-1 Unit: mm

- 1	Shape						F(H7)						Mass	(kg) ⁻²	
-	symbol 1	A(H7)	В	С	D	Е	F(I	17)	G	Н	М			Reduction ratio	
	Symbol						Min	Max				Shaft output	Flange output	Shaft output	Flange output
	AA□	30		45	M3×8										
	AB□	30	7	46	M4×10										
	AF□	34		48	M3×8		6	8				1.01	0.89	1.07	0.95
	AC□			70	M5×12		"	0				1.01	0.69	1.07	0.95
	AD□			/0		□60			32	85	45				
	AE□	50	6.5	60	M4::10										
	$AX\square$	50	0.5	70	M4×10										
	AY□			60			9								
	AZ□			70	M5×12			14				1.06	0.94	1.12	1.00
	9E□	70	7	00	M6×12		11		00	86	46]			
	9F□	70	/	90	M5×12	□80	''		33	86	46				

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.

Contact us for information on speed reducers only and on special installation method.


(Note) 1. A symbol for input shaft coupling is supplied in "
in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

2. The weight varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 20 (HPGP Series)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications.

Fig. 021-1

Measurement Table ===

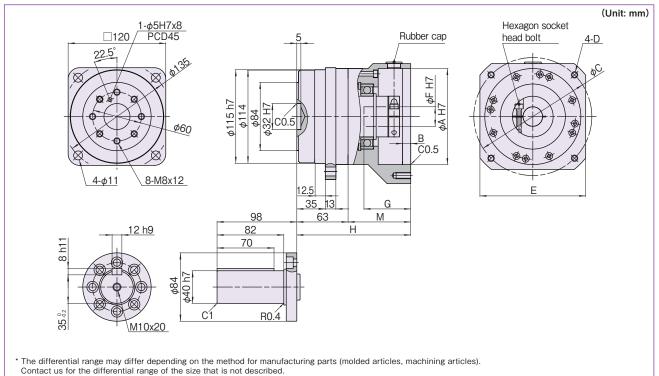
Table 021-1 Unit: mm

Chana						F(H7)							Mass	(kg) ²		
Shape symbol ¹	A(H7)	В	С	D	Е	Г(г	17)	G	H ^{*3}	M ^{*3}	Reductio	n ratio=5	Reduction rati	0=11,15,21,45	Reduction	n ratio=33
Symbol						Min	Max				Shaft output	Flange output	Shaft output	Flange output	Shaft output	Flange output
PGC□			70	M5×12												
PGD□	50	10	70	M4×10	φ89			35	98 (103)	52 (57)	2.7	2.3	3.0	2.6	3.1	2.7
PGE□			60	M4×8					(100)	(01)						
PFF_	70	7	90	M5×12		7	19									
PFE□□	70	,	90	M6×12	□80			42	105	59	2.9	2.5	3.2	2.8	3.3	2.9
PHC□□	80	10	100	M6×12	□100			42	(110)	(64)	2.9	2.5	3.2	2.6	3.3	2.9
PHD□	95	6	115	M8×16												
PJA□□	30	5	45	M3×8	455	6	8	30.5	93.5	47.5	_	_	2.5	2.1	2.6	2.2
PJB□□	30	٥	46	M4×10	φ55	o	0	30.5	(98.5)	(52.5)	_	_	2.5	2.1	2.0	2.2

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.

Contact us for information on speed reducers only and on special installation method.


(Note) 1. A symbol for input shaft coupling is supplied in "\[\]" in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

- 2. The weight varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.
- 3. The parenthesized value indicates the value for reduction ratio = 33.

Dimensional Outline Drawing - Model No. 32 (HPGP Series)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications.

Fig. 022-1

Measurement Table ===

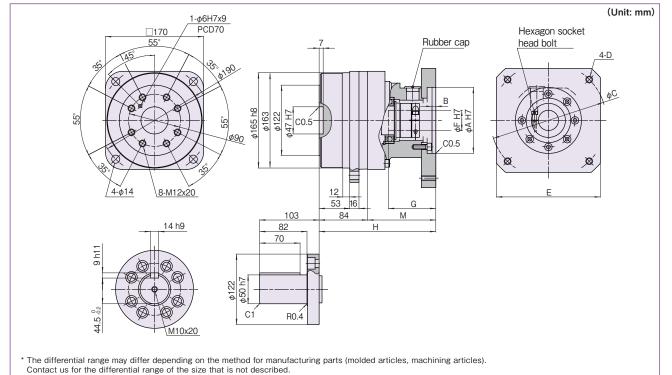
Table 022-1 Unit: mm

Chana						E/L	F(H7)						Mass	s (kg) ^{*3}		
Shape symbol ¹	A(H7)	В	С	D	E	'('	17)	G	H ^{*4}	M ^{*4}		n ratio=5		io=11,15,21,45		n ratio=33
cyc.						Min	Max				Shaft output	Flange output	Shaft output	Flange output	Shaft output	Flange output
PNA□	70		90	M5×12												
PNB□□	80	7	100	M6×12				56			7.4	6.0	8.0	6.6	8.3	6.9
PNC□	70		90	IVIOX 12	φ122				139 (144)	76 (81)						
$PND\square\square$	50	10	70	M5×12				38	(144)	(01)	_	_	7.7	6.3	8.0	6.6
PNE□□	50	10	70	M4×10				36			_	_	7.7	0.3	8.0	0.0
PNF□	95	6	115	M8×10	φ135	10	24	62	145 (150)	82 (87)	7.5	6.1	8.1	6.7	8.4	7.0
PNG□□	70	4	90	M6×12	φ122			38	139 (144)	76 (81)	7.4	6.0	8.0	6.6	8.3	6.9
PNJ□	95	6	115	M6×10	φ135			62	145 (150)	82 (87)	7.5	6.1	8.1	6.7	8.4	7.0
PMC□	110	10	145	M8×18	□130			59	142 (147)	79 (84)	7.4	6.0	8.0	6.6	8.3	6.9
PPA□				M8×25			**				8.0	6.6	8.6	7.2	9.1	7.5
PPB□□	114.3	6.5	200		□100	16	35 ^{*2}	81	164	101	9.0	7.6	9.6	8.2	9.9	8.5
PQP□□	114.3	0.5	200	M12×25	□180			01	(169)	(106)	14.6	13.2	_	_	_	_
PPC□□	200		235		□220						9.1	7.7	9.7	8.3	10.0	8.6

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications. Contact us for information on speed reducers only and on special installation method.

(Note) 1. A symbol for input shaft coupling is supplied in "


"
in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

- 2. Note that only diameter ϕ 35 has H7 tolerance and plus tolerance.
- 3. The weight varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.
- 4. The parenthesized value indicates the value for reduction ratio = 33.

Dimensional Outline Drawing - Model No. 50 (HPGP Series)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications.

Fig. 023-1

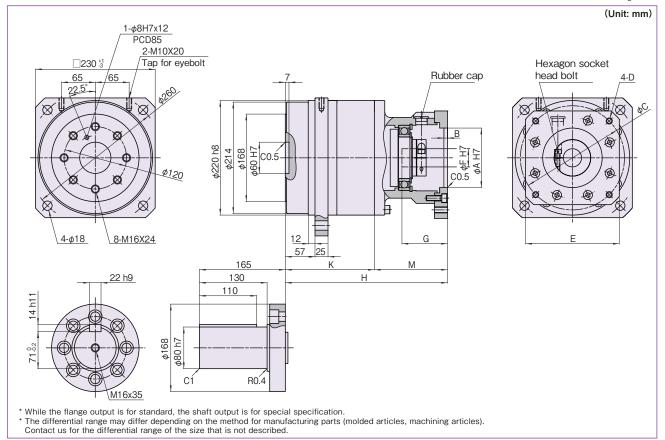
Measurement Table =

Table 023-1 Unit: mm

Shape						E/I	H7)					Mass	s (kg) ^{*3}	
symbol ¹	A(H7)	В	С	D	E	1 (1	17)	G	Н	М	Reduction	n ratio=5	Reduction ratio	=11,15,21,33,45
Symbol						Min	Max				Shaft output	Flange output	Shaft output	Flange output
$AA\square\square$	110		145	M8×16										
AD□□	95	10	115	M8×10	φ 170			55.5	176	92	17.6	14.6	19.0	16.0
AE□□	80	10	100	M6×10	φινο		35 ⁻²	55.5	176	92	17.6	14.6	19.0	16.0
AF□□	95		115	IVIOXIU										
BA□□	110		145	M8×25	□130						17.7	14.7	19.1	16.1
вв□□	114.3		200		□180	19	42				18.6	15.6	20.1	17.1
EP□□	114.3		200	M12×25	16U		42	81	202	118	25.9	22.9	27.4	24.4
BC□□	200	6.5	235	IVITZXZS	□220			01	202	110	18.7	15.7	20.2	17.2
EQ□□	200		233		<u> </u>		35 ⁻²				26.0	23.0	27.5	24.5
BF□□	130		165	M10×25	□180						18.6	15.6	20.1	17.1
СВ□□	114.3		200	M12×25	□180		42	114	243.5	159.5	_	_	20.4	17.4

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.


Contact us for information on speed reducers only and on special installation method.

- (Note) 1. A symbol for input shaft coupling is supplied in " \square " in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - 2. Note that only diameter ϕ 35 has H7 tolerance and plus tolerance.
 - 3. The weight varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 65 (HPGP Series)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications.

Fig. 024-1

Measurement Table **_____**

Table 024-1 Unit: mm

н		Shape	A(H7)	В	С	D	Е	F(I	H7)	G	Н	К	М	Mass	(kg) -
L		symbol ^{¹¹}	Α(Π1)	В	C		-	Min	Max	G	П	K	IVI	Shaft output	Flange output
	eed 3 4, 5)	СВ□□	114.3		200		□180								
	Single-stage speed reduction type (Reduction ratio = 4, 5)	CG□□	180	10	215	M12×25		35 ^{*2}	55	113	241.5	91	150.5	48	38
	gle-sta educti ıction ı	cc□□	200	10	235	MIIZXZS	□220	35	55	113	241.5	91	150.5	46	36
	Sin r (Redt	CJ□□	230		265		□250								
		СВ□□	114.3		200		□180								
	ın type 20, 25	CG□□	180	10	215	M12×25		35 ^{*2}	55	113	311.5	161	150.5		
	reduction type 12, 15, 20, 25)	cc□□	200		235		□220								
	speed reation	вв□□	114.3		200	M12×25	□180							52	42
	tage sp tion raf	вс□□	200	6.5	235	INITZXZS	□220	10	35 ^{*2}	84	288	170	440		
	Dual-stage speed r (Reduction ratio = 1	BF□□	130	0.5	165	M10×25	□180	19	33	04	200	170	118		
		ВА□□	110		145	M8×25	□130								

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.

Contact us for information on speed reducers only and on special installation method. (Note) 1. A symbol for input shaft coupling is supplied in "\sum in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

2. Note that only diameter ϕ 35 has H7 tolerance and plus tolerance.

3. The weight varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

■MEMO

Rating Table (HPG Series Helical Gear Type)

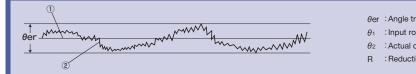
For selecting the model number, refer to the rating table.

Table 026-1

	D 1 11	Data d auto			ible max.	Permiss	ible peak	Permissi	ible max.	Permissible ave.	Permissible max. input	Inertia mon value on in	nent (equiv. nput side) *7	Ma	ss ^{*8}
Model	Reduction ratio	Rated outp	out torque		of ave. orque *²	torque at s	start/stop *3	momentar	ry torque ⁴	input rotational speed ¹⁵	rotational speed *6	Shaft output	Flange output	Shaft output	Flange output
		N⋅m	kgf⋅m	N⋅m	kgf⋅m	N·m	kgf⋅m	N∙m	kgf⋅m	r/min	r/min	×10 ⁻⁴ kg·m ²	×10 ⁻⁴ kg·m ²	kg	kg
	4	2.8	0.3	6.3	0.64	10	1.0					0.011	0.0084		
	5	2.9	0.3	6.5	0.67	10	1.0	1				0.0069	0.0053		
	6	2.9	0.3	6.5	0.67	10	1.0					0.0047	0.0036		
11	7	3.1	0.3	7.0	0.71	9.0	0.9	20	2.0	3000	10000	0.0035	0.0027	0.24	0.19
	8	3.1	0.3	7.0	0.71	7.0	0.7]				0.0026	0.002		
	9	3.1	0.3	6.0	0.61	6.0	0.6]				0.0021	0.0016		
	10	3.4	0.3	5.0	0.51	5.0	0.5					0.0017	0.0013		
	3	4.0	0.4	9.0	0.92	20	2.0	37	3.8		5000	0.089	0.072		
	4	7.0	0.7	16	1.6	30	3.1					0.047	0.037		
	5	7.2	0.7	16	1.6	30	3.1	1				0.03	0.023		
	6	7.3	0.7	16	1.6	30	3.1	1		0000		0.028	0.024	0.55	0.45
14	7	7.8	0.8	18	1.8	26	2.7	56	5.7	3000	6000	0.021	0.018	0.55	0.45
	8	7.8	0.8	18	1.8	20	2.0					0.016	0.014		
	9	7.9	0.8	17	1.7	17	1.7	1				0.013	0.011		
	10	8.5	0.9	15	1.5	15	1.5					0.01	0.0087		
	3	11	1.1	25	2.6	90	9.2	124	13		4000	0.64	0.53		
	4	23	2.3	51	5.2	133	14					0.36	0.3		
	5	23	2.4	53	5.4	133	14	1				0.23	0.19		
	6	23	2.4	53	5.4	126	13	1				0.15	0.13		
20	7	25	2.5	56	5.7	108	11	217	22	3000	6000	0.11	0.093	1.7	1.3
	8	25	2.5	56	5.7	84	8.6	1				0.085	0.07		
	9	25	2.6	57	5.8	73	7.4	1				0.067	0.055		
	10	27	2.8	61	6.2	65	6.6	1				0.055	0.046		
	3	50	5.1	110	11	290	30	507	52		3600	3.5	2.8		
	4	77	7.9	170	17	400	41					1.7	1.3		
	5	80	8.2	180	18	400	41	1				1.1	0.79		
	6	80	8.2	180	18	390	40	ĺ				0.73	0.55		
32	7	85	8.7	190	19	330	34	34 650 66	3000	6000	0.55	0.41	4.5	3.1	
	8	85	8.7	190	19	260	27				0.43	0.33			
	9	86	8.8	190	19	220	22					0.34	0.26		
	10	92	9.4	200	20	200	20	1				0.28	0.22		
(Note) 1 O			an the life o	41 000											

- (Note) 1. Output torque set based on the life of L10 = 20000 hours when input rotational speed is 3000 r/min, which is the rated rotational speed of ordinary servo motors. Models 50 and 65 are set at 2000 r/min as the rated rotational speed and at L10 = 20000 hours as the life for the servo motor to be combined.
 - 2. Permissible maximum value of average load torque calculated based on a load torque pattern (page 014). A life of 2000 hours or more is a criterion when operated at an input speed of 2000 r/min.
 - 3. Permissible maximum value of torque applied on start and stop in operation cycles.
 - 4. Permissible maximum value for impact torque in an emergency stop and for external impact torque. Operation exceeding these ranges may cause damages to reducers.
 - 5. Permissible maximum value of average input rotational speed during operations. Make it a point to operate below this value especially when the operation mode is near continuous operation.
 - ${\small 6.}\ \ {\small Permissible\ maximum\ input\ rotational\ speed\ in\ operation\ modes\ other\ than\ continuous\ operation.}$
 - 7. The value for a speed reducer itself. Values that include the input shaft coupling are shown in the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - 8. The weight of a speed reducer itself. See measurement tables for values that include an input shaft coupling, motor flange and other parts.

Performance Table (HPG Series Helical Gear Type)

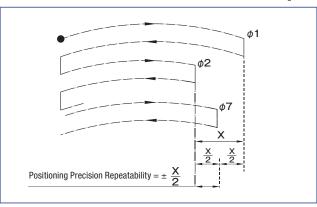

The values in the table are for the HPG reducer alone.

The input side shape may vary depending on the size of the mounted motor. For the input shaft coupling and motor flange values, please contact us.

Table 027-1

Model	Reduction ratio	Angle transmis	sion precision 1	Repeatability *2	Starting	torque ^{*3}	Overdrive sta	rting torque [•]	No-load runi	ning torque *5
Wiodei	riculation ratio	arc-min	×10⁻⁴rad	arc-sec	cN⋅m	kgf-cm	N⋅m	kgf·m	cN⋅m	kgf⋅cm
	4				4.7	0.48	0.19	0.019	6.8	0.69
	5				4.1	0.42	0.21	0.021	5.4	0.55
	6				3.6	0.37	0.22	0.022	4.5	0.46
11	7	5	14.5	±20	3.3	0.34	0.23	0.024	3.9	0.4
	8				3	0.31	0.24	0.024	3.4	0.35
	9				2.8	0.29	0.25	0.026	3	0.31
	10				2.6	0.27	0.26	0.027	2.7	0.28
	3				13	1.3	0.38	0.039	22	2.2
	4				11	1.1	0.45	0.046	17	1.7
	5				10	1	0.51	0.052	13	1.3
14	6	4	11.6	±15	9.5	1	0.57	0.058	11	1.1
14	7	4	11.0	±15	9	0.92	0.63	0.064	9.4	1
	8				8.5	0.87	0.68	0.069	8.3	0.85
	9				8.1	0.83	0.73	0.074	7.3	0.74
	10				7.8	0.8	0.78	0.08	6.6	0.67
	3				31	3.2	0.93	0.095	50	5.1
	4				25	2.6	1	0.1	38	3.9
	5				22	2.2	1.1	0.11	30	3.1
20	6	4	11.6	±10	20	2	1.2	0.12	25	2.6
20	7	4	11.6	±10	18	1.8	1.3	0.13	21	2.1
	8				17	1.7	1.4	0.14	19	1.9
	9				17	1.8	1.5	0.15	17	1.7
	10				16	1.6	1.6	0.16	15	1.5
	3				56	5.7	1.7	0.17	135	14
	4				52	5.3	2.1	0.21	101	10
	5				49	5	2.5	0.26	81	8.3
20	6	4	11.0	.10	47	4.8	2.8	0.29	68	6.9
32	7	4	11.6	±10	45	4.6	3.2	0.33	58	5.9
	8				44	4.5	3.5	0.36	51	5.2
	9				43	4.4	3.9	0.4	45	4.6
	10				42	4.3	4.2	0.43	41	4.2

(Note) 1. Angle transmission precision indicates the difference between (1) logical rotating angle and (2) actual rotating angle of output when any rotating angle is given as an input. The values in the table are maximum values



- hetaer : Angle transmission precision
- θ_1 : Input rotation angle
- : Actual output rotation angle
- : Reduction ratio of HPG series

$$\theta$$
er= θ_2 - $\frac{\theta_1}{R}$

(Note) 2. The repeatability is determined by repeating positioning in a given position from the same direction seven times, by measuring stop positions of the output shaft and by calculating the maximum difference. Measured values are indicated in angles (degrees) and are prefixed with "±" to 1/2 of the maximum differences. The values in the table are maximum values.

Fig. 027-2

(Note) 3. Starting torque means the momentary "starting torque" with which the output side starts rotation when a torque is applied on the input side. The values in the table are maximum values.

Table 027-2

Load	No load
HPG speed reducer surface temperature	25°C

(Note) 4. Overdrive starting torque means the momentary "starting torque" with which the input side starts rotation when a torque is applied on the output side. The values in the table are maximum values.

Load	No load
HPG speed reducer surface temperature	25°C

(Note) 5. No-load running torque means the torque on the input side required to put the speed reducer under a no-load condition. The values in the table are average values Table 027-4

Input speed	3000r/min				
Load	No load				
HPG speed reducer surface temperature	25°C				

Torque - Torsion Characteristic (HPG Series)

Gear head type standard item

Table 028-1

sional quantity on side at TR x 0.15 Torsional rigidity Backlash 4 5 6 11 7 3.0 8.7 2.5 7.3 0.065 22.0 8 9 10 3 4 5 6 3.0 8.7 47.0 2.2 6.4 8 9 10 3 4 5 6 20 3.0 8.7 1.5 4.4 0.55 180.0 7 8 9 10 3 4 5 6 32 3.0 8.7 1.3 3.8 2.2 740.0 7 8 9

■Gear head type BL1 specification (backlash of 1 min. or less)

Table 028-2

14	×10⁴rad	arc-min	×10⁴rad	kgf-m/arc-min	x100N-m/rad	
14					47.0	
5 6 7 8 9 10 3 4 5 6	2.9	1.1	3.2	0.14	47.0	
14 6 7 1.0 8 9 10 3 4 5 6 1 0 0	2.9	1.1	3.2	0.14	47.0	
14 7 1.0 8 9 10 3 4 5 6 1.0	2.9	1.1	3.2	0.14	47.0	
7 8 9 10 3 4 5 6	2.9	1.1	3.2	0.14	47.0	
9 10 3 4 5 6						
10 3 4 5 6						
3 4 5 6						
4 5 6						
5 6 10						
6 1.0	1					
20 10						
20 1.0	2.9	0.6	1.7	0.55	180.0	
7	2.5	0.0	1,	0.55	100.0	
8						
9						
10						
3						
4						
5						
32 6 1.0	2.9	0.5	1.5	2.2	740.0	
7		J				
8						
9						
10						

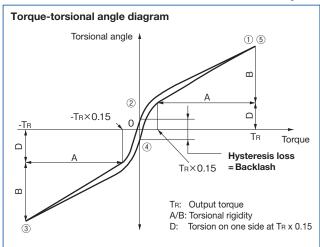
■Torsional rigidity (windup curve)

10

Anchoring the speed reducer input and casing and applying a torque to the output part will generate torsion in the output part in accordance with the applied torque. Change the torque slowly in the order of: (1) Forward output torque, (2) Zero, (3) Reverse output torque, (4) Zero and (5) Forward output torque. A loop of (1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) (return to (1)) will be drawn in Fig. 028-1. The inclination in the region from "0.15 x output torque" to "Output torque" is small. The torsional rigidity of the HPG series is an average value of this inclination.

The inclination in the region from "zero torque" to "0.15 x output torque" is large. This is caused by uneven distribution such as fine uneven contact of the engaging parts and load of the planet gears under a light load.

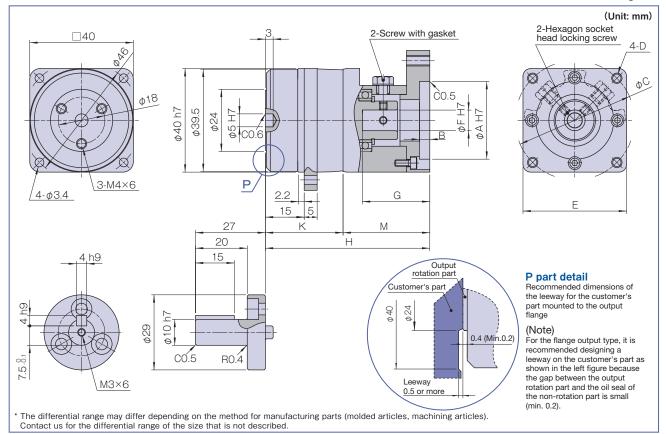
Calculation of total torsional quantity (Windup)


The method to calculate the total torsional quantity (average value) on one side when the speed reducer applies a load in a no-load state.

● Calc	ulation formula	
	$\theta = D + \frac{T - T_L}{\frac{A}{B}}$	
Symbo	ls in calculation formula	
θ	Total torsional quantity	
D	Torsional quantity on one side at output torque x 0.15 torque	See Fig. 028-1, Table 028-1, Table 028-2
T	Load torque	
TL	Output torque x 0.15 torque (=T _R x 0.15)	See Fig. 028-1
A / B	Torsional rigidity	See Fig. 028-1, Table 028-1, Table 028-2

■Backlash (Hysteresis loss)

The zero-torque width (2) - (4) in Fig. 028-1 "Torque-torsional angle diagram" is called a hysteresis loss. The hysteresis loss between "Forward output torque" and "Reverse output torque" is defined as backlash of the HPG series. At the time of pre-shipment factory inspection, the backlash of the HPG series is less than 3 minutes (1 minute or less for customized products).


Fig. 028-1

Dimensional Outline Drawing - Model No. 11 (HPG Series Helical Gear Type)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 029-1

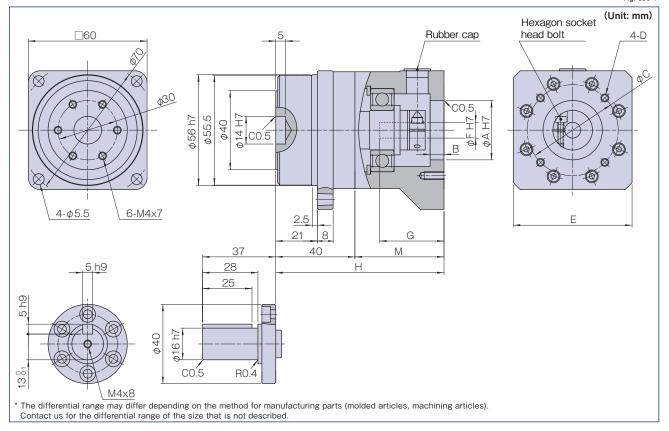
Measurement Table =

Table 029-1 Unit: mm

Shape	A(H7)	В	С	D	E	F(l	H7)	G	Н	М	Mass Reduction ratio	(kg) ^{*2} =4,5,6,7,8,9,10
symbol ^{*1}						Min	Max				Shaft output	Flange output
RAA□	28		33	M2.5×5	φ 40			16.5	45.5	24.5	0.31	0.26
RAB□	20	3	28	φ3.4 through	□25			20.5	49.5	28.5	0.32	0.27
RAC□	22		43.8	φ3.4 through				20.5	49.5	20.0	0.33	0.28
RAD□	30		46	M4×9	□40							
RAE□	30		45	M3×9	<u>⊔</u> 40	5	8				0.35	0.30
RAN□	34	4	48	M3×9				25.5	54.5	33.5		
RAF□		4	70	M4×9				20.5	04.5	33.5		
RAG□	50		70	M5×9	□60						0.40	0.35
RAH□			60	M4×9								

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.


Contact us for information on speed reducers only and on special installation method.

(Note) 1. A symbol for input shaft coupling is supplied in " \square " in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

2. The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 14 (HPG Series Helical Gear Type)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

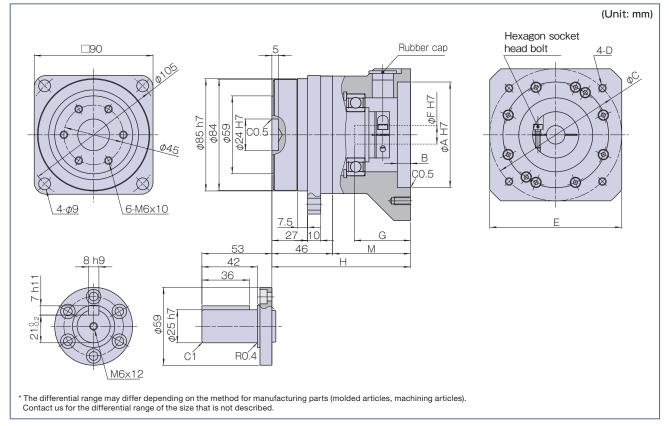
Measurement Table

Table 030-1

- 1	Chana						F(H	J7\				Mass	(kg) ²
-1	Shape symbol ¹¹	A(H7)	В	С	D	E	1 (1	17)	G	Н	М	Reduction ratios	=3,4,5,6,7,8,9,10
L	Symbol						Min	Max				Shaft output	Flange output
	AA□	30		45	M3×8								
	AB□	30	7	46	M4×10								
	AF□	34		48	M3×8		8	8				1.00	0.92
	AC□			70	M5×12		0	°				1.02	0.92
	AD□			70		□60			32	85	45		
ſ	AE□	50	6.5	60									
	RAX□	50	6.5	70	M4×10								
	$RAY\square$			60			9						
	RAZ□			70	M5×12			14				1.07	0.97
ſ	RDA□	70	7	90	M6×12		44		33	0.0	46		
	RDB□	70	/	90	M5×12	□80	11		33	86	46		

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.


Contact us for information on speed reducers only and on special installation method. (Note) 1. A symbol for input shaft coupling is supplied in "\sum " in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

2. The weight varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 20 (HPG Series Helical Gear Type)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 031-1

Measurement Table

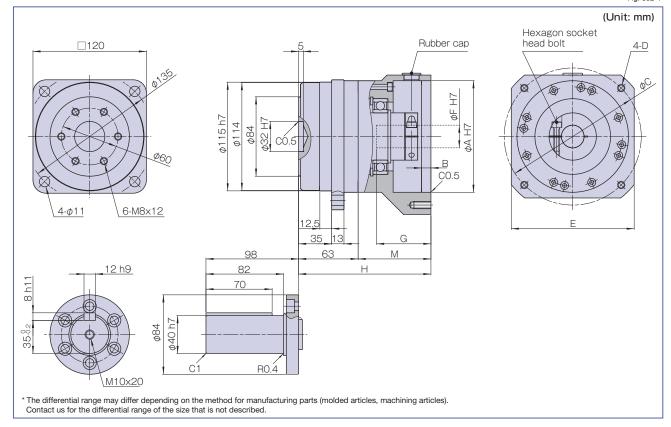
Table 031-1 Unit: mm

Shape symbol ¹	A(H7)	В	С	D	E	F(H	H7)	G	Н	М	Mass Reduction ratios	(kg) ^{*2} =3,4,5,6,7,8,9,10
Symbol						Min	Max				Shaft output	Flange output
PGC□			70	M5×12								
PGD□	50	10	70	M4×10	φ89			38	98	52	2.8	2.4
PGE□			60	M4×8								
PFF□	70	7	00	M5×12	□80	7	19					
PFE□□	70	,	90	M6×12	60			45	105	F0.	20	0.0
PHC□□	80	20	100	IVIOX IZ	□ 400			45	105	59	3.0	2.6
PHD□	80	6	115	M8×16	□100							

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.

Contact us for information on speed reducers only and on special installation method.


(Note) 1. A symbol for input shaft coupling is supplied in " \square " in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

2. The weight varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 32 (HPG Series Helical Gear Type)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 032-1

Measurement Table

Table 032-1 Unit: mm

Shape						F/I	H7)				IVIGOO	
symbol*1	A(H7)	В	С	D	E	1 (1	,	G	Н	M	Reduction ratios	=3,4,5,6,7,8,9,10
Symbol						Min	Max				Shaft output	Flange output
PNA□	70		90	M5×12								
PNB□□	80	7	100	M6×12	φ122			56	139	76	7.5	6.1
PNC□	70		90	M6×12		10	24					
PNF□	95	6	115	M8×10	φ135	10	24	62	145	82	7.6	6.2
PNG□□	70	4	90	M6×12	φ122			38	139	76	7.5	6.1
PNJ□	95	6	115	M6×10	φ135			62	145	82	7.6	6.2
PMC□	110	10	145	M8×18	□135			59	142	79	7.5	6.1
PPA□	110		140	M8×25	I35						8.1	6.7
PPB□□	1140	6.5	000		□180	16	35 ^{*2}	81	164	101	9.1	7.7
PQP□□	114.3	0.5	200	M12×25	□160			01	104	101	14.7	13.3
PPC□□	200		235		□220						9.2	7.8

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.

- Contact us for information on speed reducers only and on special installation method. (Note) 1. A symbol for input shaft coupling is supplied in " \square " in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - 2. Note that only diameter ϕ 35 has H7 tolerance and plus tolerance.
 - 3. The weight varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Rating Table (HPG Series)

HPG series gear head type has a variety of 6 model numbers. For selecting the model number, refer to the rating table.

Table 034-1

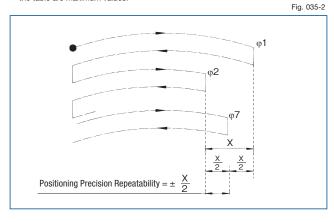
	Deduction	Rated outr	out torque "1		ble max. of ave.	Permissi	ible peak	Permissi	ible max.	Permissible ave.	Permissible max. input	Inertia mor value on ir	nent (equiv. nput side) *7	Ma	ss *8		
Model	ratio	Rated outp	out torque	load to		torque at s	start/stop *3	momentar	ry torque ⁴	speed ⁵	rotational speed ^{*6}	Shaft output	Flange output	Shaft output	Flange output		
		N∙m	kgf∙m	N·m	kgf∙m	N∙m	kgf⋅m	N∙m	kgf⋅m	r/min	r/min	×10 ⁻⁴ kg·m²	×10 ⁻⁴ kg·m²	kg	kg		
	5	2.5	0.26	5.0	0.51	7.8	0.80	ļ				0.0036	0.0021	0.18	0.14		
	9	2.5	0.26	3.9	0.40	3.9	0.40					0.0012	0.00070				
11	21	3.4	0.35					20	2.0	3000	10000	0.0019	0.0018				
	37	3.4	0.35	6.0	0.61	9.8	1.0					0.00068	0.00066	0.24	0.20		
	45	3.4	0.35									0.00049	0.00048				
	3	2.9	0.30	6.4	0.65	15	1.5	37	3.8	ļ	5000	0.077	0.059	0.50	0.40		
	5	5.9	0.60	13	1.3							0.026	0.020				
	11	7.8	0.80									0.019	0.018				
14	15	9.0	0.90			23	2.3	56	5.7	3000	6000	0.017	0.016				
	21	8.8	0.90	15	1.5							0.0092	0.0089	0.60	0.50		
	33	10	1.0									0.0030	0.0029				
	45	10	1.0									0.0028	0.0027				
	3	8.8	0.90	19	2.0	64	6.5	124	13	-	4000	0.57	0.46	1.6	1.2		
	5	16	1.6	35	3.6	ł						0.21	0.17				
00	11	20	2.0	45	4.6	ł				0000	6000	0.16	0.15				
20	15	24	2.4	53	5.4	100	10	217	22	3000		0.14	0.14	1.8			
	21	25	2.5	55	5.6	-						0.071	0.069		1.4		
	33 45	29 29	3.0	60	6.1							0.024	0.023				
	3	31	3.0	71	7.2	225	23	507	52		3600	2.8	2.0				
	5	66	6.7	150	15	225	23	507	52	-	3600	1.0	0.73	4.3	2.9		
	11	88	9.0	150	15	300							0.84	0.73			
32	15	92	9.4	170	17							3000		0.65	0.78		
32	21	98	10	170	17		31	650	66	3000	6000	0.36	0.02	4.9	3.5		
	33	108	11											0.13	0.12	4.5	3.5
	45	108	11	200	20								0.13	0.12			
	3	97	9.9	195	20	657	67	1200	122		3000	17	13				
	5	170	17	340	35	007	07	1200	122		3000	6.1	4.8	13	10		
	11	200	20	400	41	1		l				3.6	3.3				
50	15	230	24	450	46	1				2000		3.1	2.9				
	21	260	27	400	10	850	87	1850	189	2000	4500	1.7	1.6	15	12		
	33	270	28	500	51							0.63	0.60				
	45	270	28	000	01			l				0.59	0.60				
	4	500	51	900	92						2500	42 ^{*9}	28				
	5	530	54	1000	102	1					2000	27 ^{*9}	18	32 ^{*9}	22		
	12	600	61	1100	112	1						18 ^{*9}	17				
	15	730	75	1300	133	2200	225					17 ^{*9}	16				
65	20	800	81			1		4500	460	2000	3000	7.1 ^{*9}	6.5		37		
	25	850	87	1500	153							6.5 ^{*9}	6.1	47*9			
	40	640	66	1300	133	1900	194					1.5 ^{*9}	1.3				
	50	750	77	1500	153	2200	225	1				1.3 ^{*9}	1.2				
(Note) 1 O																	

- (Note) 1. Output torque set based on the life of L10 = 20000 hours when input rotational speed is 3000 r/min, which is the rated rotational speed of ordinary servo motors. Models 50 and 65 are set at 2000 r/min as the rated rotational speed and at L10 = 20000 hours as the life for the servo motor to be combined.
 - 2. Permissible maximum value of average load torque calculated based on a load torque pattern (page 014). A life of 2000 hours or more is a criterion when operated at an input speed of 2000 r/min.
 - 3. Permissible maximum value of torque applied on start and stop in operation cycles.
 - 4. Permissible maximum value for impact torque in an emergency stop and for external impact torque. Operation exceeding these ranges may cause damages to reducers.
 - 5. Permissible maximum value of average input rotational speed during operations. Make it a point to operate below this value especially when the operation mode is near continuous operation.
 - ${\small 6. \ Permissible \ maximum \ input \ rotational \ speed \ in \ operation \ modes \ other \ than \ continuous \ operation.} }$
 - 7. The value for a speed reducer itself. Values that include the input shaft coupling are shown in the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - 8. The weight of a speed reducer itself. See measurement tables for values that include an input shaft coupling, motor flange and other parts.
 - 9. The standard specification is flange output. Shaft output is a customized specification.

Performance Table (HPG Series) ■

The values in the table are for the HPG reducer alone.

The input side shape may vary depending on the size of the mounted motor. For the input shaft coupling and motor flange values, please contact us.


Table 035-1

Model	Reduction ratio	Angle transmis	sion precision 1	Repeatability *2	Starting	torque ³	Overdrive sta	rting torque *4	No-load run	ning torque *5																																
Wodel	Neduction ratio	arc-min	×10⁻⁴rad	arc-sec	cN⋅m	kgf⋅cm	N·m	kgf⋅m	cN·m	kgf⋅cm																																
	5				4.0	0.41	0.20	0.020	5.0	0.51																																
	9	1			3.7	0.37	0.33	0.034	2.5	0.26																																
11	21	5	14.5	±30	2.9	0.29	0.60	0.061	1.3	0.13																																
	37				1.6	0.17	0.60	0.062	0.90	0.092																																
	45				1.4	0.15	0.64	0.066	0.80	0.082																																
	3				14	1.5	0.43	0.044	21	2.1																																
	5				8.6	0.88	0.43	0.044	9.8	1.0																																
	11				8.0	0.82	0.90	0.092	4.9	0.50																																
14	15	4	11.6	±20	7.4	0.75		0.11	2.9	0.30																																
	21				5.2	0.53	1.1		2.9	0.30																																
	33				3.3	0.34] '-'	0.12	2.0	0.20																																
	45				2.4	0.25																																				
	3				31	3.2	0.93	0.095	50	5.1																																
	5	[19	1.9			28	2.9																																
	11	ļ			15	1.6	1.7	0.17	15	1.5																																
20	15	4	11.6	±15	12	1.2	1.8	0.18	11	1.1																																
	21	_		9.3	0.95	2.0	0.20	8.8	0.90																																	
	33	ļ			6.4	0.65	2.1	0.22	5.9	0.60																																
	45				4.7	0.48	2.1	0.22	4.9	0.50																																
	3			±15	56	5.7	1.7	0.17	135	14																																
	5				33	3.4			73	7.4																																
	11				±15	±15	±15	±15	±15	±15	±15	27	2.7	2.9	0.30	38	3.9																									
32	15	4	11.6									±15	±15	±15	±15	±15	±15	±15	±15	±15	±15	±15	±15	25	2.5	3.7	0.38	29	3.0													
	21																							Ļ	Ļ		Ļ	L		,	Ļ									22	2.3	4.7
	33																				15	1.5	4.8	0.49	14	1.4																
	45				11	1.2	5.1	0.52	13	1.3																																
	3				134	14	4.0	0.41	250	26																																
	5	ļ			80	8.2			130	13																																
	11				45	4.6	5.0	0.51	60	6.1																																
50	15	3	8.7	±15	40	4.1	6.0	0.61	47	4.8																																
	21				36	3.7	7.6	0.78	40	4.1																																
	33				24	2.4	7.8	0.80	24	2.5																																
	45				20	2.0	8.9	0.91	20	2.0																																
	4				288	29	12	1.2	420	43																																
	5				240	24			360	37																																
	12				125	13	15	1.5	190	19																																
65	15	3	8.7	±15	110	11	17	1.7	160	16																																
	20				95	10	19	1.9	130	13																																
	25				84	8.6	21	2.1	110	11																																
	40				75	7.7	30	3.1	76	7.7																																
	50				70	7.1	35	3.6	64	6.6																																

(Note) 1. Angle transmission precision indicates the difference between (1) logical rotating angle and (2) actual rotating angle of output when any rotating angle is given as an input. The values in the table are maximum values.

2. The repeatability is determined by repeating positioning in a given position from the same direction seven times, by measuring stop positions of the output shaft and by calculating the maximum difference. Measured values are indicated in angles (degrees) and are prefixed with "±" to 1/2 of the maximum differences. The values in the table are maximum values.

3. Starting torque means the momentary "starting torque" with which the output side starts rotation when a torque is applied on the input side. The values in the table are maximum values.

Table 035-2

Load	No load
HPG speed reducer surface temperature	25°C

4. Overdrive starting torque means the momentary "starting torque" with which the input side starts rotation when a torque is applied on the output side. The values in the table are maximum values.

	Table coc c
Load	No load
HPG speed reducer surface temperature	25°C

5. No-load running torque means the torque on the input side required to put the speed reducer under a no-load condition. The values in the table are average values.

Table 035-4

Input speed	3000r/min		
Load	No load		
HPG speed reducer surface temperature	25°C		

High-performance Gear Heads for Servo Motors series

Torque - Torsion Characteristic (HPG Series)

Gear head type standard item

Table 036-1

							able 036-1
Model	Reduction ratio	Backlash		Torsional quantity on one side at T _R x 0.15		Torsional rigidity	
				D		A/B	
		arc-min	×10 ⁻⁴ rad	arc-min	×10⁻⁴rad	kgf·m/arc-min	×100N·m/rad
	5			2.5	7.3		
	9			2.0	7.0		
11	21	3.0	8.7			0.065	22
	37			3.0	8.7		
	45						
	<u>3</u> 5			2.2	6.4		47
	11						
14	15	3.0	8.7	2.7	7.9	0.14	
1.4	21	0.0					
	33						
	45						
	3			1.5	4.4	0.55	180
	5			1.5	4.4		
	11				5.8		
20	15	3.0	8.7	2.0			
	21						
	33						
	45						
	3	3.0		1.3	3.8	2.2	740
	5 11		8.7				
32	15			1.7	4.9		
32	21						
	33						
	45						
	3			4.0			
	5	3.0	8.7	1.3	3.8	14	4700
	11						
50	15						
	21			1.7	4.9		
	33						
	45						
	4		8.7	1.3	3.8	38	13000
65	5						
	12 15			1.7	4.9		
	20	3.0					
	25						
	40						
	50						

■Gear head type BL1 specification

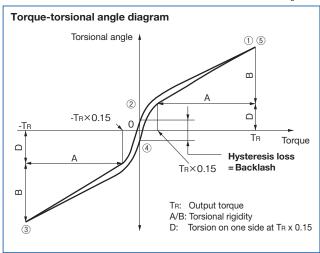
(backlash of 1 min. or less) Table 036-2

Model	Reduction ratio	Backlash arc-min ×10 ⁻⁴ rad		Torsional quantity on one side at T _R x 0.15		Torsional rigidity	
				D arc-min ×10 ⁻⁴ rad		A/B kgf·m/arc-min ×100N·m/rad	
	3	arc-min	×10 Tau	1.1	3.2	Kgi iivaic iiiiii	×10014 III/Idu
14	11 15 21 33 45	1.0	2.9	1.7	4.9	0.14	47
	3 5		2.9	0.6	1.7	0.55	180
20	11 15 21 33 45	1.0		1.1	3.2		
32	3 5	1.0	2.9	0.5	1.5	2.2	740
	11 15 21 33 45			1.0	2.9		
50	<u>3</u> 5		2.9	0.5	1.5	14	4700
	11 15 21 33 45	1.0		1.0	2.9		
65	4 5	}		0.5	1.5	38	13000
	12 15 20 25 40 50	1.0	2.9	1.0	2.9		

■Torsional rigidity (windup curve)

Anchoring the speed reducer input and casing and applying a torque to the output part will generate torsion in the output part in accordance with the applied torque. Change the torque slowly in the order of: (1) Forward output torque, (2) Zero, (3) Reverse output torque, (4) Zero and (5) Forward output torque. A loop of (1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) (return to (1)) will be drawn in Fig. 036-1. The inclination in the region from "0.15 x output torque" to "Output torque" is small. The torsional rigidity of the HPG series is an average value of this inclination.

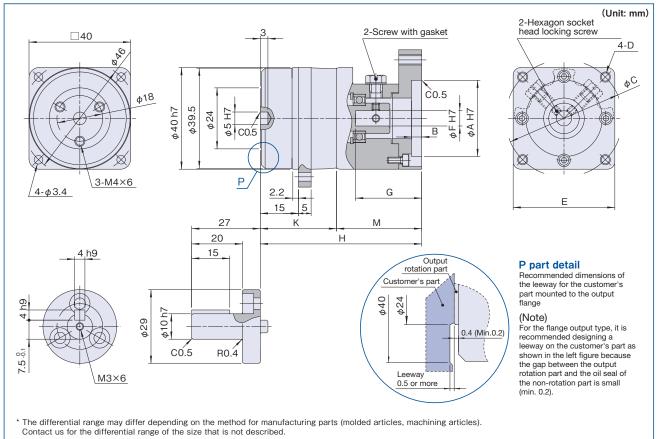
The inclination in the region from "zero torque" to "0.15 x output torque" is large. This is caused by uneven distribution such as fine uneven contact of the engaging parts and load of the planet gears under a light load.


Calculation of total torsional quantity (Windup)

The method to calculate the total torsional quantity (average value) on one side when the speed reducer applies a load in a no-load state.

•	Calculation formula				
	$\theta = D + \frac{T - T_L}{\frac{A}{B}}$				
Sy	mbols in calculation formula				
θ	Total torsional quantity				
D	Torsional quantity on one side at output torque x 0.15 torque	See Fig. 036-1, Table 036-1, Table 036-2			
T	Load torque				
Τι	Output torque x 0.15 torque (=T _R x 0.15)	See Fig. 036-1			
A	/ B Torsional rigidity	See Fig. 036-1, Table 036-1, Table 036-2			

■Backlash (Hysteresis loss)


The zero-torque width (2) - (4) in Fig. 036-1 "Torque-torsional angle diagram" is called a hysteresis loss. The hysteresis loss between "Forward output torque" and "Reverse output torque" is defined as backlash of the HPG series. At the time of pre-shipment factory inspection, the backlash of the HPG series is less than 3 minutes (1 minute or less for customized products).

Dimensional Outline Drawing - Model No. 11 (HPG Series) ■

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 037-1

Measurement Table

Table 037-1 Unit: mm

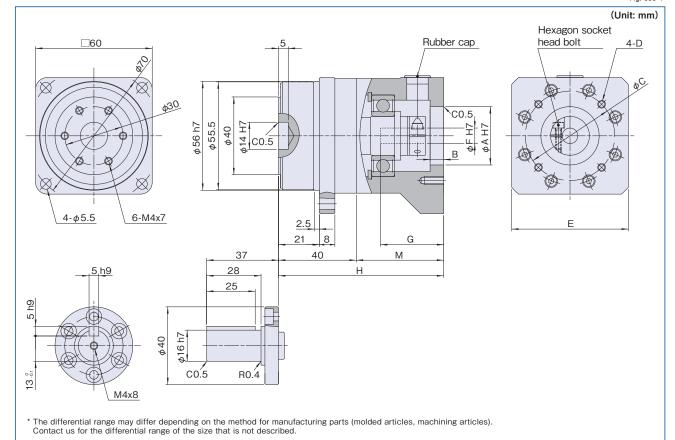
	Shape						F(H7)						Mass	Mass (kg) ²	
	symbol*1	A(H7)	В	С	D	D E	Min	Max	G	Н	K	М	Shaft output	Flange output	
	AA□	28		33	M2.5×5	φ 40			19.5	45.5		24.5	0.25	0.21	
_ 6	AB□	20	3	28	φ3.4	□25			23.5	49.5		28.5	0.26	0.22	
5,	AC□	22		43.8	through				23.3	49.5		20.0	0.27	0.23	
Single-stage speed reduction type (Reduction ratio = 5,	AD□	30		46	M4×9	□40									
stag stion	AE□	30		45	M3×9	□40	5	8			21		0.29	0.25	
gle-s educ	AN□	34	4	48	IVIOX9				28	54.5		33.5			
Sing	AF□		*	70 M4×9	M4×9				20	54.5	3-4.5		33.5		
	AG□	50		70	M5×9	□60							0.34	0.30	
	AH□			60	M4×9										
	AA□	28		33	M2.5×5	ε5 φ 40			16.5	54.5		24.5	0.31	0.27	
type 15)	AB□	20	3	28	φ3.4	□25			20.5 58.5	58.5		28.5	0.32	0.28	
tion 37, 4	AC□	22		43.8	through				20.5	30.3		20.5	0.33	0.29	
= 21,	AD□	30		46	M4×9	□40									
atio :	AE□	30		45	M3×9	□40	5	8			30		0.35	0.31	
ge sp	AN□	34	4	48	IVIOX9				25.5	63.5		33.5			
Dual-stage speed reduction type (Reduction ratio = 21, 37, 45)	AF□		-	70	M4×9				20.0	00.0		33.3			
Dua (R.	AG□	50	_	,,,	M5×9	9 □60							0.40	0.36	
	AH□			60	M4×9										

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.

Contact us for information on speed reducers only and on special installation method.

(Note) 1. A symbol for input shaft coupling is supplied in "


"in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

2. The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 14 (HPG Series)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 038-1

Measurement Table :

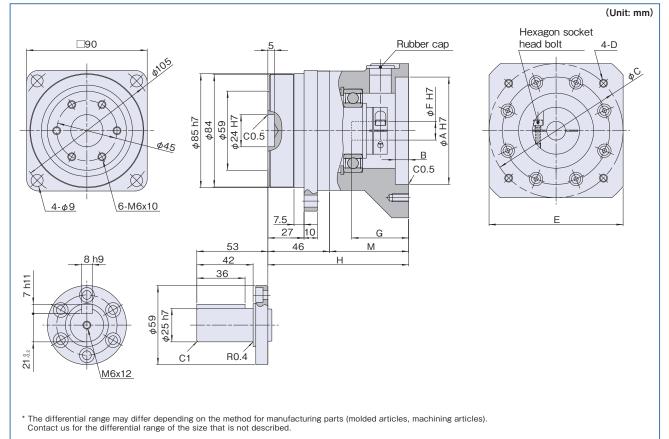
Unit: mr

- 1	Shape						F(H7)							s (kg) ⁻		
١	symbol ¹	A(H7)	В	С	D	Е	1 (1	17)	G	Н	М	Reduction	ratio=3,5	Reduction ratio	=11,15,21,33,45	
Į	Symbol						Min	Max				Shaft output	Flange output	Shaft output	Flange output	
	AA□	30		45	M3×8											
	AB□	30	7	46	M4×10											
	AF□	34		48	M3×8		6	8				0.97	0.85	1.04	0.92	
	AC□			70	M5×12		ľ	0				0.97	0.65	1.04	0.92	
	AD□			70		□60			32	85	45					
	AE□	50	6.5	60	M4×10											
l	AX□	50	0.5	70	W4X10											
	AY□			60	9	14				1.02	0.90	1.09	0.97			
	AZ□			70	M5×12											

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.

Contact us for information on speed reducers only and on special installation method.


(Note) 1. A symbol for input shaft coupling is supplied in " \square " in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

2. The weight varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 20 (HPG Series) ■

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 039-1

Measurement Table

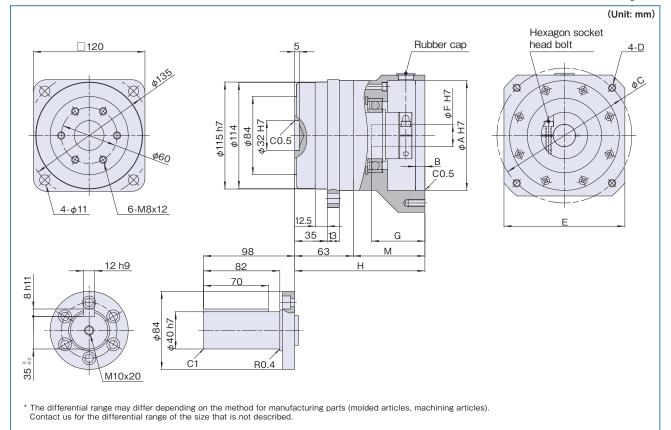
Table 039-1

Shape					_ F(H7)					Mass (kg) ^{*2}				
symbol ¹	A(H7)	В	С	D	Е	1 (117)	G	Н	М	Reduction	ion ratio=3,5 Reduction ratio=11,15,21,3		=11,15,21,33,45	
Symbol						Min	Max				Shaft output	Flange output	Shaft output	Flange output
GC□			70	M5×12										
GD□	50	10	70	M4×10	φ89			35	98	52	2.7	2.3	2.9	2.5
GE□			60	M4×8										
FF□	70	7	90	M5×12	□80	7	19							
FE□□	70	,	90	M6×12	60			40	105	50	0.0	0.5	0.1	0.7
нс□□	80	10	100	M6×12	□100			42	105	59	2.9	2.5	3.1	2.7
HD□	95	6	115	M8×16	□ 100									
JA□□	30	5	45	M3×8	4.55	6	8	30.5	93.5	47.5	_	_	2.4	2.0
JB□□	30	٥	46	M4×10	φ55	0	0	30.5	93.5	47.5	_	_	2.4	2.0

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.

Contact us for information on speed reducers only and on special installation method.


(Note) 1. A symbol for input shaft coupling is supplied in " \square " in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

2. The weight varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 32 (HPG Series)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 040-

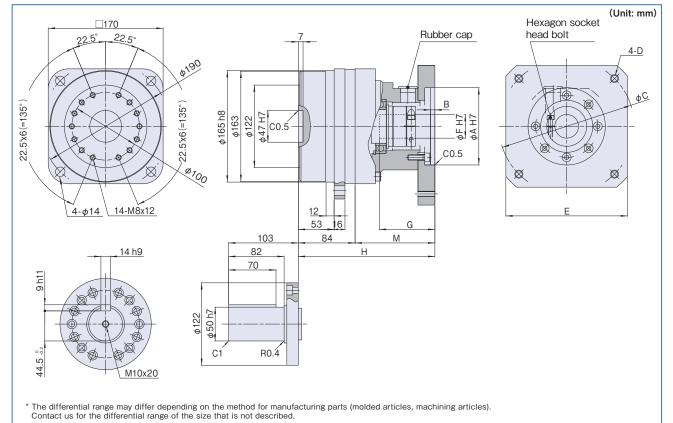
Measurement Table ====

Table 040-1 Unit: mm

Chana						F(H7)					Mass	ss (kg) ³		
Shape symbol ¹	A(H7)	В	С	D	Е	1 (1	17)	G	Н	М	Reduction	ratio=3,5	Reduction ratio	=11,15,21,33,45
Gymbol						Min	Max				Shaft output	Flange output	Shaft output	Flange output
NA□	70		90	M5×12										
NB□□	80	7	100	M6×12				56			7.3	5.9	7.8	6.4
NC□	70		90	IVIO×12	φ122				139	76				
ND□□	50	10	70	M5×12		10	24	38			_	_	7.5	6.1
NE□□] =0	10	/0	M4×10		10	24	36			_	Reduction ratio=3,5 Reduction ratio=1 shaft output Flange output Shaft output Flange output 7.3 5.9 7.8 — — 7.5 — — 7.5 7.4 6.0 7.9 7.3 5.9 7.8 7.4 6.0 7.9 7.3 5.9 7.8 7.9 6.5 8.4 8.9 7.5 9.4	6.1	
NF□	95	6	115	M8×10	φ135			62	145	82	7.4	6.0	7.9	6.5
NG□□	70	4	90	M6×12	φ122			38	139	76	7.3	5.9	7.8	6.4
NJ□	95	6	115	M6×10	φ135			62	145	82	7.4	6.0	7.9	6.5
MC□	110	10	1.45	M8×18				59	142	79	7.3	5.9	7.8	6.4
PA□	110		145	M8×25	□130	16	35 ⁻²				7.9	6.5	8.4	7.0
РВ□□	114.3	6.5	200	1440 05	□180	16	33	81	164	101	8.9	7.5	9.4	8.0
PC□□	200	0	235	M12×25	□220						9.0	7.6	9.5	8.1

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.


Contact us for information on speed reducers only and on special installation method.

- (Note) 1. A symbol for input shaft coupling is supplied in "
 "in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - 2. Note that only diameter ϕ 35 has H7 tolerance and plus tolerance.
 - 3. The weight varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 50 (HPG Series) ■

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 041-1

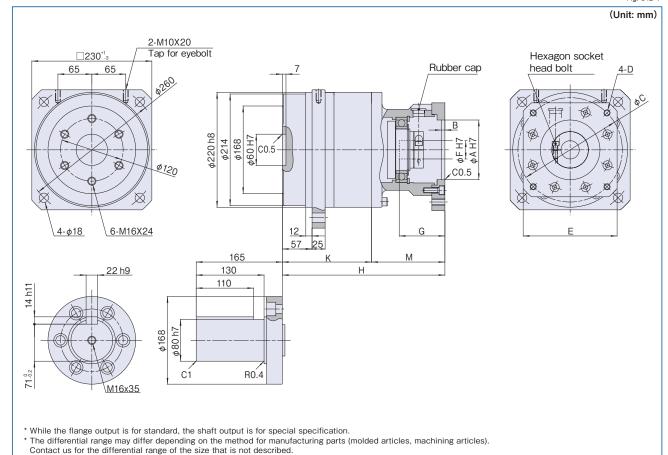
Measurement Table

Table 041-1

Chana						E/L	F(H7)					Mass	Mass (kg) ³ atio=3,5 Reduction ratio- ange output Shaft output 14.6 19.0 14.7 19.1 15.6 20.1 22.9 27.4 15.7 20.2		
Shape symbol ^{*1}	A(H7)	В	С	D	E	Ε Ι(ΙΙ)	1 (117)		G	Н	М	Reduction	ratio=3,5	Reduction ratios	=11,15,21,33,45
dynnbor						Min	Max				Shaft output	Flange output	Shaft output	Flange output	
$AA\square\square$	110		145	M8×16											
AD□□	95	10	115	M8×10	— φ170		55.5	176	92	17.6	146	10.0	16.0		
AE□□	80	10	100	M6×10	φ170		35 ⁻²	55.5	176	92	17.0	14.0	19.0	16.0	
AF□□	95		115	IVIOXIU							17.7				
BA□□	110		145	M8×25	□130						17.7	14.7	19.1	16.1	
вв□□	114.3		200		□180	19	42				18.6	15.6	20.1	17.1	
EP□□	114.5		200	M12×25	□180		42	81	202	118	25.9	22.9	27.4	24.4	
BC□□	200	6.5	235	IVITZXZS				01	202	110	18.7	15.7	20.2	17.2	
EQ□□	200		233		□220	35 ⁻²				26.0	23.0	27.5	24.5		
BF□□	130		165	M10×25	□180						18.6	15.6	20.1	17.1	
СВ□□	114.3		200	M12×25	□160		42	114	243.5	159.5	_	_	20.4	17.4	

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.


Contact us for information on speed reducers only and on special installation method.

- (Note) 1. A symbol for input shaft coupling is supplied in " \Box " in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - 2. Note that only diameter ϕ 35 has H7 tolerance and plus tolerance.
 - 3. The weight varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 65 (HPG Serires)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 042-1

Measurement Table

Table 042-1 Unit: mn

		Shape	A(H7)) B C D E F(H/)	H/)	G	I н I к I	М	Mass	(kg)					
		symbol ^{⁴1}	Α(Π1)	В	C	D		Min	Max	G		K	IVI	Shaft output	Flange output
-	ed 9 4, 5)	СВ□□	114.3		200		□180								
	single-stage speed reduction type eduction ratio = 4, 9	CG□□	180	10	215	MIOLOE		35 ^{*2}		113	241.5	91	150.5	48	38
	single-stage s reduction ty (Reduction ratio	CC□□	200	10	235	M12×25	□220 35	35	55	113	241.5	91	150.5	46	
Sin r (Redt	Siln (Redt	CJ□□	230		265		□250								
	9, 50)	CB□□ ^{*4}	114.3		200	M12×25	□180								
	ın type 25, 40	CG□□ ^{*4}	180	10	215			35 ⁻²	55	113 311.5 1	161	150.5			
	eductic 5, 20,	CC□□ ^{*4}	200		235		□220								
	eed re= 12, 1	вв□□	114.3		200	M12×25	□180							52	42
	tage sp ratio =	вс□□	200	6.5	235	IVITZXZS	□220	19	35 ⁻²	84	288	170	440		
	Dual-stage speed reduction type (Reduction ratio = 12, 15, 20, 25, 40, 50)	BF□□	130	0.5	165	M10×25	□180	19	35	04	268	170	118		
		ВА□□	110		145	M8×25	□130								

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.

Contact us for information on speed reducers only and on special installation method.

(Note) 1. A symbol for input shaft coupling is supplied in " \Box " in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

- 2. Note that only diameter ϕ 35 has H7 tolerance and plus tolerance.
- Note that only diameter \$950 has not believe and plus tolerance.The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.
- 4. Reduction ratio 40 and 50 not supported.

HarmonicDrive® **CSG-GH Serires High-torque Type CSF-GH Series Standard Type**

Size

Model: 14, 20, 32, 45, 65

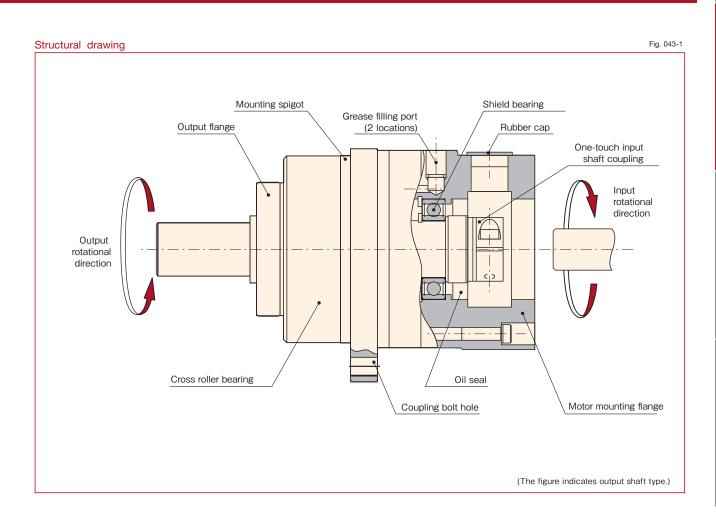
Peak torque

CSG-GH: = 23 N·m to 3419 N·m CSF-GH: = 18 N·m to 2630 N·m

Reduction ratio

CSG-GH: = 50 to 160 CSF-GH: = 50 to 160

High positioning precision


Repetitive positioning ±4 to ±10arc-sec

No backlash

Can be mounted to servo motors of many manufacturers

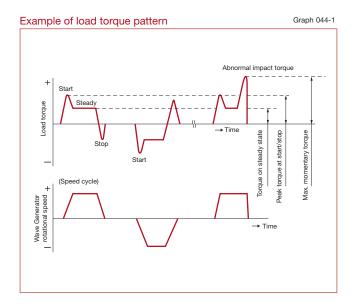
Yasukawa Electric, Mitsubishi Electric, Fanuc, Panasonic, Sanyo Denki, Tamagawa Seiki, Fuji Electric, Omron, Toshiba Machine, Keyence For other servo motors, please feel free to contact the nearest sales office.

See the model selection tool on the web page to find matching model on each company's servo motors. (URL:https://hds-tech.jp/)

Terms on the Rating Table

See the corresponding pages of each series for values from the ratings.

■Rated torque


This indicates the permissible continuous load torque when the input rotational speed is 2000 r/min.

Permissible peak torque for start and stop (see Graph 044-1)

Load larger than the steady torque is applied to HarmonicDrive® by the load inertia moment for start and stop. Values from the ratings show the acceptable value at peak torque.

Permissible maximum value at average load torque

When the load torque and input rotational speed change, the average value of the load torque needs to be obtained. Values from the ratings show the acceptable value at average load torque. When the average load torque (calculation formula: Page 049) exceeds the value from the ratings, generation of heat degrades the lubricant earlier and accelerates the abrasion of the teeth. Due care should be taken.

■ Permissible maximum momentary torque (see Graph 044-1)

Unexpected impact torque may be applied from the exterior except regular-load torque and load torque for start and stop. Values from the ratings show the acceptable value at the time. The frequency of applying this torque is limited. See "On intensity" and "On life" section.

Permissible maximum input rotational speed, permissible average input rotational speed

Use the input rotational speed within the limit of acceptable values shown from the ratings (calculation formula of the average input rotational speed: Page 049).

Inertia moment

The inertia moment on the axles of the wave generators of each model is indicated.

On Life

■Life of the wave generator

The life of HarmonicDrive® is determined by the life of the wave generator bearing, and you can calculate this by the rotational speed and the load torque just as with a general ball bearing.

		Table 044-1				
	Life					
Series name	CSF-GH	CSG-GH				
L ₁₀ (10% damage probability)	7,000 hours	10,000 hours				
L ₅₀ (average life)	35,000 hours	50,000 hours				

^{*} Life is based on the rated rotational speed and rated torque from the ratings.

Caluculation formula for Life (Lh) by actual

operation condition Formula 044-1 $Lh = Ln \cdot \left(\frac{Tr}{Tav} \right)^{\!\!3} \cdot \left(\frac{Nr}{Nav} \right)$

	Table 044-2
Ln	Life of L ₁₀ or L ₅₀
Tr	Rated torque
Nr	Rated rotational speed
T_{av}	Average load torque on the output side (calculation formula: Page 049)
Nav	Average input rotational speed (calculation formula: Page 049)

Relational diagram of intensity and

Graph 044-2 life of HarmonicDrive® Buckling torque 10 the rated torque is 9 8 7 Not Life of wave generator (L10) 6 (when 5 Bottom fatigue intensity of the flexspline 4 torque **Emergency operation region** 3 oad-2 Rated torque Normal operation area 1 0 ⊾ 10⁵ 106 108 109 10 Total frequency of the wave generator

(Note)

Use HarmonicDrive® within the range of "Normal operation area." Using it beyond "Emergency operation area" may result in damaging HarmonicDrive® earlier than usual.

- * Lubricant life such as for abrasion on the tooth surface is not taken into consideration in the graph described above.
- * Use the graph above as reference values

On Intensity

■Intensity of flexspline

As flexspline repeats elastic deformation, the transmission torque of HarmonicDrive® is calculated based on the fatigue strength of the bottom of the flexspline. Values of the rated torque and permissible peak torque for start and stop are those within the fatigue limit of the bottom of the flexspline.

Although the value of the permissible maximum momentary torque (impact torque) fully endures the fatigue limit of the bottom of the flexspline, it could generate fatigue fracture if it frequently exceeds the permissible maximum momentary torque. Therefore, the number of applications of impact torque is limited to prevent possible fatigue fracture.

Restriction on the bending frequency of the flexspline by the rotation of the wave generator while the impact torque is applied: 1.0×10^4 (frequency)

You can calculate the permissible frequency of impact torques from this restriction on the bending frequency.

Calculation formula

Formula 045-1

$$N = \frac{1.0 \times 10^4}{2 \times \frac{n}{60} \times t}$$

Table 045-1

Permissible frequency	N frequency					
Time that impact torque is applied	t sec					
Rotational speed of the wave generator	n r/min					
The flexspline bends two times by one cycle of the wave generator.						

Exceeding the permissible frequency may cause fatigue damage to the flexspline.

■Buckling torque

When excess torque is applied to the flexspline (output) with the wave generator fixed, the flexspline causes elastic deformation, buckles on the body before long and will be destroyed. The torque at the time is called buckling torque.

* See the corresponding pages of each series for buckling torque values.

When the flexspline buckles, HarmonicDrive® will be put out of commission. Therefore, adequate care should be exercised.

■ Ratcheting torque

When excess impact torque is applied during operation, the engagement of the teeth between the circular spline and the flexspline may be put momentarily out of alignment instead of damaging the flexspline. This phenomenon is called "ratcheting," and the torque is called "ratcheting torque" (see values on the corresponding page of each series). Operating the drive without fixing ratcheting will result in earlier abrasion of the teeth and shorter life of the wave generator bearing due to the effect of the grinding powder generated by ratcheting.

- * See the corresponding pages of each series for ratcheting torque values.
- * Ratcheting torque is affected by the rigidity of the housing to be used when installing the circular spline. Contact us for details of the ratcheting torque.


When ratcheting is caused, the teeth may not be correctly engaged and become out of alignment as shown in Fig. 045-1. As operating the drive in this condition will generate vibration and damage the flexspline, adequate care should be exercised.

Once ratcheting is caused, the tips of the teeth are worn and the torque value generated by ratcheting will be lowered. Pay due attention to this point as well.

When the engagement of the teeth is out of alignment

Fig. 045-1

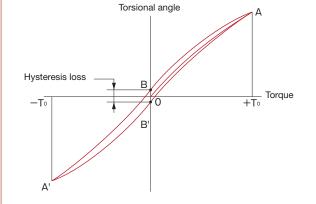
This condition is called "dedoi-dal".

On Rigidity

Rigidity and backlash of the drive system greatly affects the performance of the servo system. A detailed review of these items is required before designing the equipment and selecting a model number.

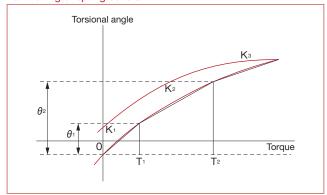
■ Rigidity

Fixing the input side (wave generator) and applying torque to the output side (flexspline) generates torsion almost proportional to the torque on the output side. Fig. 046-1 shows the torsional angle quantity on the output side when the torque applied on the output side starts from zero, increases up to $+T_0$ and decreases down to $-T_0$. This is called the "Torque – torsional angle diagram," which normally draws a loop of 0-A-B-A'-B'-A. The slope described in the "Torque – torsional angle diagram" is represented as the spring constant for the rigidity of HarmonicDrive® (unit: $N \cdot m/rad$).


As shown in Fig. 046-2, this "Torque – torsional angle diagram" is divided into 3 partitions, and the spring constants in the area are represented as K_1 , K_2 and K_3 .

 K_1The spring constant when the torque changes from [zero] to [T_1] K_2The spring constant when the torque changes from [T_1] to [T_2] K_3The spring constant when the torque changes [T_2] or more.

See the corresponding pages of each series for values of the spring constants (K₁, K₂, K₃) and the torque-torsional angles (T₁, T₂- θ₁, θ₂).


Torque - torsional angle diagram

Partitioning of spring constant

Fig. 046-2

■Example of calculating torsional quantity

The torsional quantity (θ) is obtained from the example of CSF-25-100-2A-GR.

When the load torque is extremely small (T_{L1}=2.9 N·m) -

As the torque is T_1 or less, torsional quantity $\theta_{\rm L1}$ is represented as follows.

$$\theta_{L1} = T_{L1}/K_1$$

=2.9/3.1×10⁴
=9.4×10⁻⁵rad (0.33 arc-min)

When the load torque is T_{L2}=39 N·m) -

As the torque between T_1 and $T_2,$ torsional quantity θ_{L2} is represented as follows.

$$\begin{split} \theta_{L2} = & \theta_{1} + (T_{L2} - T_{1})/K_{2} \\ = & 4.4 \times 10^{-4} + (39 - 14)/5.0 \times 10^{4} \\ = & 9.4 \times 10^{-4} \text{rad (3.2 arc-min)} \end{split}$$

The total torsional quantity when the load is applied the other way round will be double the quantity obtained above plus the backlash quantity.

* The torsional quantity indicates the value of the stand-alone component. Note that the torsional quantity of the output shaft is not included.

■ Hysteresis loss

As shown in Fig. 046-1, when the torque is applied up to the rated value and is brought back to [zero], the torsional angle does not become absolutely [zero] and a small amount remains (B – B'). This is called hysteresis loss.

See the corresponding pages of each series for hysteresis loss quantity.

■Backlash

As hysteresis loss is mainly generated by internal abrasion, it is hardly generated, and only a small allowance is represented in the diagram when the torque is extremely small.

As the allowance of the tooth engagement is suppressed to [zero] for HarmonicDrive®, the backlash quantity is caused by the clearance of Oldham's coupling (self-aligning mechanism) of the wave generator. The rigid type has no clearance. The value measured on the output side by fixing the input side is very small as shown on the corresponding page of each series.

^{*} See the corresponding pages of each series for the backlash quantity.

Two angle transmission error elements of HarmonicDrive® correspond to a cycle of the input shaft from the mechanical viewpoint of HarmonicDrive®. Therefore, the frequency is double the input frequency as it is the main element of the error.

If the characteristic frequency of the vibration system including HarmonicDrive $^{\!\otimes}$ is f=15 Hz, the input rotational speed (N) is expressed as shown below.

Formula 047-1

$$N = \frac{15}{2} \cdot 60 = 450 \text{r/mir}$$

The resonant condition is generated in the rotating speed area (450 r/min).

How to obtain the characteristic frequency of the vibration system including HarmonicDrive®

Formula 047-2

$$=\frac{1}{2\pi} \sqrt{\frac{K}{J}}$$

Symbol of the calculation formula

Table 047-1

f	The characteristic frequency of the vibration system including HarmonicDrive®	Hz	
K	Spring constant of HarmonicDrive®	N·m/rad	See pages of each series.
J	Load inertia	kg·m²	

The efficiency varies depending on the following conditions.

- Reduction ratio
- ■Input rotational speed
- Load torque
- ■Temperature
- Lubrication condition (Type of lubricant and the quantity)
 The efficiency characteristics of each series shown in this catalog
 depends depend on the measuring condition shown in Table
 047-2.
- See the corresponding pages of on each series for efficiency values.

ivieasuring	condition	
	Measurement by	Ī

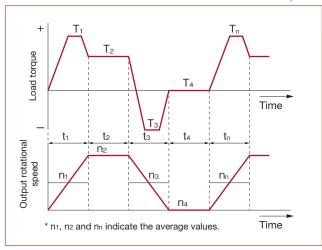
Table 047-2

Built-in	Measurement by building the recommended built-in precision into the product							
Load torque	The rated torque shown in the ratings (see the corresponding pages on each series)							
Lubricating	Grease	Name	Harmonic grease [®] SK-1A					
condition	lubrica- Name		Harmonic grease® SK-2					

Model Number Selection

In general, the servo system is rarely in a continuous constant load state. The input rotational speed, load torque change and comparatively large torque are applied at start and stop. Unexpected impact torque may be applied.

These fluctuating load torques should be converted to the average load torque in selecting a model number.


As an accurate cross roller bearing is built in the direct external load support (output flange) of the unit type, the maximum moment load, life of the cross roller bearing and the static safety coefficient should also be checked (see "Checking the main roller bearing" on Page 114 to 119).

(Note) If HarmonicDrive® CSG/CSF-GH series is installed with the output shaft facing downward (motor faces upward) and continuously operated in one direction under the constant load state, lubrication failure may occur. In this case, please contact the sales office of Harmonic Drive Systems Inc.

■ Checking the load torque pattern

First, you need to look at the picture of the load torque pattern. Check the specifications shown in the figure below.

Graph 048-1

Flowchart of model number selection

Select a model number according to the following flowchart. If you find a value exceeding that from the ratings, you should review it with the upper-level model number or consider reduction of conditions including the load torque.

Calculate the average load torque applied on the output side of Harmonic Drive from the load torque pattern: Tav (N·m).

$$T_{av} = \sqrt[3]{\frac{n_1 \cdot t_1 \cdot |T_1|^3 + n_2 \cdot t_2 \cdot |T_2|^3 + \cdots + n_n \cdot t_n \cdot |T_n|^3}{n_1 \cdot t_1 + n_2 \cdot t_2 + \cdots + n_n \cdot t_n}}$$

Select a model number temporarily with the following conditions. $Tav \leq Permissible maximum value of the average load torque$ (See the ratings of each series)

 $n_1 \cdot t_1 + n_2 \cdot t_2 + \cdots + n_n \cdot t_n$ Calculate the average output no av =

 $t_1 + t_2 + \cdots t_n$

Obtain the reduction ratio (R) A limit is placed on "ni max" by motors.

ni max no max

Calculate the average input rotationa speed from the average output rotational speed (no av) and the reduction ratio (R): ni av (r/min)

 $ni av = no av \cdot R$

Calculate the maximum input rotational speed from the max. output rotational speed (no *max*) and the reduction ratio (R): ni max (r/min)

ni $max = no max \cdot R$

Check whether the temporarily selected model number satisfies the following condition Permissible average input rotational peed (r/min

Ni max ≤ Permissible max. input rotational speed (r/min)

Check whether T₁ and T₃ are equal to or less than the permissible peak torque (N·m) value at start and stop from the ratings.

OK

Check whether Ts is equal to or less than the permissible maximum momentary torque (N·m) value from the ratings.

NG

Calculate (Ns) the permissible number of times from output rotational speed ns and time ts when the impact torque is applied, and check whether it satisfies the usage conditions.

104 \cdot (times) $\cdot \cdot \cdot N_S \le 1.0 \times 10^4$ (times) $2 \cdot \frac{n_S \cdot R}{}$ 60

NG

NG

Review of the operation conditions and model numbe

Calculate the lifetime

L₁₀ = 7000 ·

Check whether the calculated lifetime is equal to or more than the life of the wave generator (see Page 044).

The model number is determined

Obtain the value of each load torque pattern.

Load torque Tn (N·m) Time tn (sec) Output rotational speed

<Normal operation pattern>

Starting time Steady operation time T2. t2. n2 Stopping (slowing) time T3, t3, n3 Break time T4, t4, n4

<Maximum rotational speed>

Max. output rotational speed no max Max. input rotational speed (Restricted by motors)

<Impact torque>

When impact torque is applied Ts, ts, ns

<Required life>

 $L_{10} = L \text{ (hours)}$

<Normal operation pattern>

Starting time Steady operation time

Stopping (slowing) time

 $T_4 = 0 \text{ N·m}, \quad t_4 = 0.2 \text{ sec}, \ n_4 = 0 \text{ r/min}$

<Maximum rotational speed>

Max. output rotational speed Max. input rotational speed

(Restricted by motors)

<Impact torque>

When impact torque is applied $T_s = 500 \text{ N} \cdot \text{m}$, $t_s = 0.15 \text{ sec}$,

<Required life>

 $L_{10} = 7000 \text{ (hours)}$

Calculate the average load torque applied on the output side of Harmonic Drive from the load torque pattern: Tav (N·m).

$$Tav = \begin{array}{c} 3\sqrt{\frac{7r/\text{min}\cdot 0.3\text{sec}\cdot |400\text{N}\cdot\text{m}|^3 + 14r/\text{min}\cdot 3\text{sec}\cdot |320\text{N}\cdot\text{m}|^3 + 7r/\text{min}\cdot 0.4\text{sec}\cdot |200\text{N}\cdot\text{m}|^3}}{7r/\text{min}\cdot 0.3\text{sec}+ 14r/\text{min}\cdot 3\text{sec}+ 7r/\text{min}\cdot 0.4\text{sec}} \end{array}$$

Select a model number temporarily with the following conditions. Tav = 319 N·m \leq 620 N·m (Permissible maximum value of the average load torque for model number CSF-45-120-GH: See the ratings on Page 050.)

Thus, CSF-45-120-GH is temporarily selected.

Calculate the average output rotational speed: no av (r/min)

no
$$av = \frac{7 \text{ r/min} \cdot 0.3 \text{ sec} + 14 \text{ r/min} \cdot 3 \text{ sec} + 7 \text{ r/min} \cdot 0.4 \text{ sec}}{0.3 \text{ sec} + 3 \text{ sec} + 0.4 \text{ sec} + 0.2 \text{ sec}} = 12 \text{ r/min}$$

Obtain the reduction ratio (R).

Calculate the average input rotational speed from the average output rotational speed (no av) and the reduction ratio (R): ni av (r/min)

Calculate the maximum input rotational speed from the maximum output rotational speed (no max) and the reduction ratio (R): ni max (r/min)

1800 r/min $= 128.6 \ge 120$

ni $av = 12 \text{ r/min} \cdot 120 = 144 \text{ 0r/min}$

ni max = 14 r/min·120 = 1680 r/min

Check whether the temporarily selected model number satisfies the following condition from the ratings.

Ni av = 1440 r/min ≤ 3000 r/min (Permissible average input rotational speed of model No. 45) Ni max = 1680 r/min ≤ 3800 r/min (Permissible max. input rotational speed of model No. 45)

Check whether T1 and T3 are equal to or less than the permissible peak torque (N·m) value at start and stop from the ratings

T1 = 400 N·m \leq 823 N·m (Permissible peak torque at start and stop of model number 45) T3 = 200 N·m \leq 823 N·m (Permissible peak torque at start and stop of model number 45)

Check whether Ts is equal to or less than the permissible maximum momentary torque (N·m) value from the ratings.

Ts = 500 N·m ≤ 1760 N·m (Permissible maximum momentary torque of model number 45)

Calculate the permissible number of times (Ns) from output rotational speed ns and time ts when the impact torque is applied, and check whether it satisfies the usage conditions

$$N_S = \frac{10^4}{2 \cdot \frac{14 \text{ r/min} \cdot 120}{60}} = 1190 \le 1.0 \times 10^4 \text{ (times)}$$

of the operation conditions and model numbe

Calculate the lifetime.

$$L_{10} = 7000 \cdot \left(\frac{402 \text{ N·m}}{319 \text{ N·m}} \right)^3 \cdot \left(\frac{2000 \text{ r/min}}{1440 \text{ r/min}} \right) \text{ (hours)}$$

Check whether the calculated life is equal to or more than the life of the wave generator (see Page 026). L_{10} =19,457 hours \ge 7000 (life of the wave generator: L₁₀)

Model number CSF-45-120-GH is determined from the result described above.

nance Gear Heads for Servo Motors series

performance Gear Heads for Servo Motors series

HPG Series (Helical

HPG Series (Standard Type)

Rating Table CSG-GH

CSG-GH series is high-torque type HarmonicDrive® gear head.

The HarmonicDrive CSG-GH series is especially suitable for a wide range of high technology fields requiring precision motion control such as the semiconductor or LCD production equipment, robot and machine tool industries.

Table 050-1

Model	Reduction ratio	torq	output ue at /min. ^{*1}	torq	output ue at min. ^{*2 *8}	value	ible max. of ave. orque ³	torqu	ible peak ue on stop *4	max. mo	ssible mentary ue ^{*5}	Permissible ave. input speed	Permissible max. input speed *6	Mass of red Shaft output	lucer itself ^{*7} Flange output
		N·m	kgf⋅m	N·m	kgf∙m	N∙m	kgf∙m	N∙m	kgf⋅m	N·m	kgf⋅m	r/n	nin	kg	kg
	50	7.0	0.7	6.1	0.6	9.0	0.9	23	2.3	46	4.7				
14	80	10	1.0	8.7	0.9	14	1.4	30	3.1	61	6.2	3500	8500	0.62	0.50
	100	10	1.0	8.7	0.9	14	1.4	36	3.7	70	7.2	<u> </u>			
	50	33	3.3	29	2.9	44	4.5	73	7.4	127	13				1.4
	80	44	4.5	38	3.9	61	6.2	96	9.8	165	17	ļ			
20	100	52	5.3	45	4.6	64	6.5	107	10.9	191	20	3500	6500	1.8	
	120	52	5.3	45	4.6	64	6.5	113	11.5	191	20				
	160	52	5.3	45	4.6	64	6.5	120	12.2	191	20				
	50	99	10	86	8.8	140	14	281	29	497	51	ļ			3.2
	80	153	16	134	14	217	22	395	40	738	75]			
32	100	178	18	155	16	281	29	433	44	812	83	3500	4800	4.6	
	120	178	18	155	16	281	29	459	47	812	83				
	160	178	18	155	16	281	29	484	49	812	83				
	50	229	23	200	20	345	35	650	66	1235	126				
	80	407	41	356	36	507	52	918	94	1651	168				
45	100	459	47	401	41	650	66	982	100	2033	207	3000	3800	13	10
	120	523	53	457	47	806	82	1070	109	2033	207				
	160	523	53	457	47	819	84	1147	117	2033	207				
	80	969	99	846	86	1352	138	2743	280	4836	493	ļ			
65	100	1236	126	1080	110	1976	202	2990	305	5174	528	1900	2800	32	24
	120	1236	126	1080	110	2041	208	3263	333	5174	528		2000	02	
	160	1236	126	1080	110	2041	208	3419	349	5174	528				

- (Note) 1. Output torque set based on the life of L₁₀ = 10,000 hours when input rotational speed is 2000 r/min, which is the rated rotational speed of ordinary servo motors.
 - Output torque set based on the life of L₁₀ = 10,000 hours when input speed is 3000 r/min, which is the rated rotational speed of ordinary servo motors.
 - Permissible maximum value of average load torque calculated based on a load torque pattern (page 048).
 Note that exceeding this value may deteriorate the life or durability of the
 - product.
 4. Permissible maximum value of torque applied on start and stop in operation cycles.
 - Permissible maximum value for impact torque in an emergency stop and for external impact torque. Calculate the permissible frequency when selecting the model and check whether it meets the operating conditions.
- 6. Permissible maximum value of average load torque on non-continuous operation condition. The input rotational speed varies depending on operating environment or operating conditions. It is appropriate to regard the reference input speed during continuous operation as 3000 r/min. (Note) If HarmonicDrive® CSG-GH series is installed with the output shaft facing downward (motor faces upward) and continuously operated in one direction under the constant load state, lubrication failure may occur. * In this
- case, please contact the sales office of Harmonic Drive Systems Inc.7. The weight of a speed reducer itself. See dimension (pages 053 to 057) tables for values that include an input shaft coupling, motor flange and other parts.
- 8. The rated torque of the model number 65 is for input 2800 r/min

Ratcheting Torque CSG-GH

Table 050-2 Unit: N⋅m

Reduction ratio Model	14	20	32	45	65
50	110	280	1200	3500	_
80	140	450	1800	5000	14000
100	100	330	1300	4000	12000
120	-	310	1200	3600	10000
160	-	280	1200	3300	10000

Buckling Torque CSG-GH

Table 050-3 Unit: N·m

					Unit: N·m
Model	14	20	32	45	65
Total reduction ratio	260	800	3500	8900	26600

CSG-GH series is high-torque type HarmonicDrive® gear head.

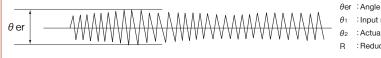

The HarmonicDrive® CSG-GH series is especially suitable for a wide range of high technology fields requiring precision motion control such as the semiconductor or LCD production equipment, robot and machine tool industries.

Table 051-1

Model	Shape symbol on input side ¹¹	Reduction ratio	Angle transmis	sion precision *2	Positioning Precision Repeatability *3	Starting	Starting torque '4		Overdrive starting torque *5		No-load running torque ^{*6}	
	iriput side		arc-min	×10 ⁻⁴ rad	arc-sec	cN⋅m	kgf⋅cm	N·m	kgf⋅m	cN·m	kgf⋅cm	
		50				8.5	0.9	3.0	0.3	5.6	0.6	
14	All products	80	1.5	4.4	±10	7.1	0.7	4.0	0.4	5.1	0.5	
		100				6.8	0.7	4.9	0.5	4.6	0.5	
		50				14	1.4	8	0.8	11	1.2	
		80				10	1.1	10	1.0	10	1.0	
	E□□	100				10	1.0	13	1.3	10	1.0	
		120				9.4	1.0	14	1.4	9.8	1.0	
20		160	1.0	2.9	±8	8.9	0.9	18	1.8	9.6	1.0	
20		50	1.0			21	2.1	12	1.3	11	1.2	
	F□□	80				17	1.8	16	1.7	10	1.0	
	G□□	100				16	1.7	20	2.0	10	1.0	
	G	120				16	1.7	24	2.4	9.8	1.0	
		160				15	1.6	30	3.0	9.6	1.0	
	KP□	50	1.0	2.9	±6	61	6.2	37	3.8	47	4.8	
	KQ□	80				48	4.9	46	4.7	42	4.3	
	KR□	100				47	4.8	56	5.7	41	4.2	
	KS□	120				43	4.4	63	6.4	40	4.1	
32	I NO	160				42	4.3	81	8.3	40	4.1	
"-		50				53	5.4	32	3.3	47	4.8	
	Products	80				40	4.1	39	4.0	42	4.3	
	other than	100				39	4.0	47	4.8	41	4.2	
	above	120				35	3.6	51	5.2	40	4.1	
		160				34	3.5	66	6.7	40	4.1	
		50				129	13	78	8.0	120	12	
		80			_	99	10	96	9.8	109	11	
45	All products	100	1.0	2.9	±5	93	9.5	111	11	107	11	
		120				88	9.0	128	13	105	11	
		160				82	8.4	158	16	103	11	
		80			[]	197	20	191	19	297	30	
65	All products	100	1.0	2.9	±4	176	18	213	22	289	30	
		120				165	17	240	24	285	29	
		160				147	15	285	29	278	28	

- (Note) 1. The shape symbols indicate the motor flange shape and input shaft joint shape of the model (refer to P007). (Upper 2 digits indicate the motor flange shape, and lower 1 digit indicates the input shaft joint shape.)
 - 2. Angle transmission precision indicates the difference between the logical rotating angle and the actual rotating angle of output when any rotating angle is given as an input. The values in the table are maximum values.

Fig. 051-1

θer : Angle transmission precision

 θ_1 : Input rotating angle : Actual output rotating angle

: Reduction ratio of HPG series (i =1: R)

$$\theta$$
er = θ_2 - $\frac{\theta_1}{R}$

3. The positioning precision repeatability is determined by repeating positioning in a given position from the same direction seven times, by measuring stop positions of the output shaft and by calculating the maximum difference. Measured values are indicated in angles (degrees) and are prefixed with "±" to 1/2 of the maximum differences. The values in the table are maximum values

(01

Positioning Precision Repeatability $= \pm$

4. Starting torque means the momentary "starting torque" with which the output side starts rotation when a torque is applied on the input side. The values in the table are maximum values.

Measuring condition

Measuring condition	Table 051-2
Load	No load
Speed reducer surface temperature	25°C

5. Overdrive starting torque means the momentary "starting torque" with which the input side starts rotation when a torque is applied on the output side. The values in the table are maximum values.

Measuring condition

Load	No load
Speed reducer surface temperature	25°C

6. No-load running torque means the torque on the input side required to put the speed reducer under a no-load condition. The values in the table are average values.

Measuring condition

Table 051-4

Input speed	2000 r/min
Load	No load
Speed reducer surface temperature	25°C

Rigidity (Spring constant) CSG-GH

Symbol	Model Symbol		14	20	32	45	65
Оутпрог		N·m	2.0	7.0	29	76	235
i	T ₁	kgf·m	0.2	0.7	3.0	7.8	24
		N·m	6.9	25	108	275	843
	T ₂	kgf⋅m	0.7	2.5	11	28	86
		×10 ⁴ N·m/rad	0.34	1.3	5.4	15	-
İ	K ₁	kgf·m/arc-min	0.1	0.38	1.6	4.3	_
	K ₂	×10 ⁴ N·m/rad	0.47	1.8	7.8	2.0	_
	K 2	kgf·m/arc-min	0.14	0.52	2.3	6.0	_
Reduction ratio	K ₃	×10 ⁴ N·m/rad	0.57	2.3	9.8	26	_
50	N3	kgf·m/arc-min	0.17	0.67	2.9	7.6	_
1	θ_1	×10⁻⁴rad	5.8	5.2	5.5	5.2	_
1	01	arc-min	2.0	1.8	1.9	1.8	_
1	θ_2	×10⁻⁴rad	16	15.4	15.7	15.1	_
	02	arc-min	5.6	5.3	5.4	5.2	_
	K ₁	×10 ⁴ N·m/rad	0.47	1.6	6.7	18	54
	IXI	kgf·m/arc-min	0.14	0.47	2.0	5.4	16
	K ₂	×10 ⁴ N·m/rad	0.61	2.5	11	29	88
	1/12	kgf·m/arc-min	0.18	0.75	3.2	8.5	26
Reduction ratio	K₃	×10 ⁴ N·m/rad	0.71	2.9	12	33	98
80 or more	1/3	kgf·m/arc-min	0.21	0.85	3.7	9.7	29
	θ1	×10⁻⁴rad	4.1	4.4	4.4	4.1	4.4
	J 1	arc-min	1.4	1.5	1.5	1.4	1.5
		×10⁻⁴rad	12	11.3	11.6	11.1	11.3

See page 046 for a description of terms. * The values in this table are average values.

Hysteresis Loss CSG-GH

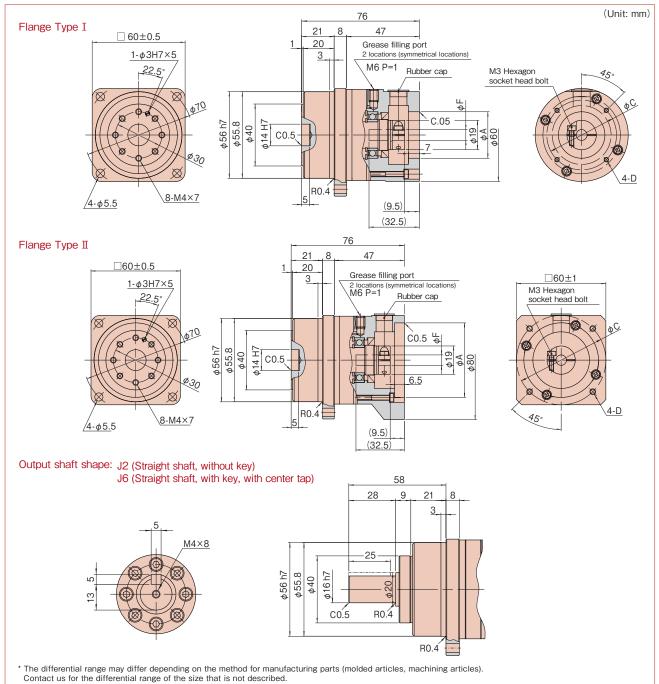
Reduction ratio 50: Approx. $5.8 \times 10^4 \text{ rad (2arc-min)}$ Reduction ratio 80 or more: Approx. $2.9 \times 10^4 \text{ rad (1arc-min)}$

See page 046 for a description of terms.

Max. Backlash Quantity CSG-GH ■

Table 052

Table 052-1


Reduction ratio	Model	14		32		
50	×10 ⁻⁵ rad	17.5	8.2	6.8	5.8	_
50	arc-sec	36	17	14	12	_
80	×10 ⁻⁵ rad	11.2	5.3	4.4	3.9	2.9
80	arc-sec	23	11	9	8	6
100	×10 ⁻⁵ rad	8.7	4.4	3.4	2.9	2.4
100	arc-sec	18	9	7	6	5
120	×10 ⁻⁵ rad	-	3.9	2.9	2.4	1.9
120	arc-sec	-	8	6	5	4
160	×10 ⁻⁵ rad	_	2.9	2.4	1.9	1.5
100	arc-sec		6	5	4	3

See page 046 for a description of terms.

Dimensional Outline Drawing - Model No. 14 CSG-GH

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications.

Fig. 053-1

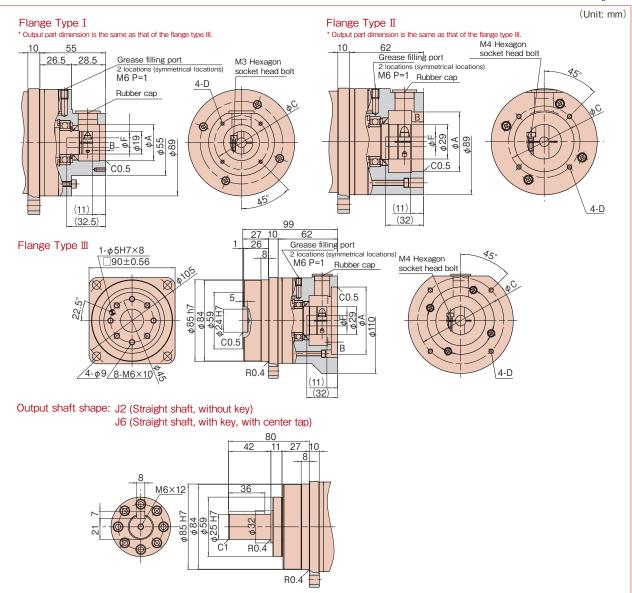
Measurement Table

Table 053-1 Unit: mm

	Shape	A(H7)	С	D	F(H	1 7)	Mass (kg) ⁻²		
	symbol *1	Λ(ι ι ι)		D	Min	Max	Shaft output	Flange output	
Flange	AB□	30	45	M3×8			0.88	0.76	
	AC.	30	46	M4×10	6	8			
Type I	AD.	34	48	M3×8					
Elenge	BA□		60	M4×10				0.78	
Flange Type II	BB□	50	70	1VI4X 1U	6	8	0.9		
	BC□		70	M5×12					

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.


Contact us for information on special installation method.

- (Note) 1. A symbol for input shaft coupling is supplied in "□" in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - 2. The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 20 CSG-GH

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications.

Fig. 054-1

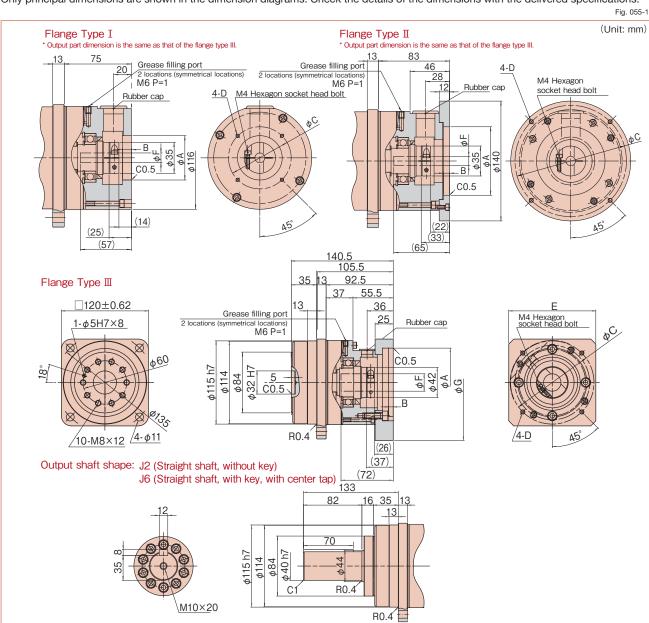
^{*} The differential range may differ depending on the method for manufacturing parts (molded articles, machining articles). Contact us for the differential range of the size that is not described.

Measurement Table ■

Table 054-1

									Unit: mm
	Shape	A(H7)	В	3 C D F(H7) Mass (kg) ²		(kg) ^{*2}			
	symbol ¹¹	Δ(111)	ם		D	Min	Max	Shaft output	Flange output
Flange	EA□	30	5	45	M3×8		8	2.3	1.9
	EB□	30	5	46	M4×10	7			
Type I	EC□	34	6	48	M3×8				
Flange	FA□			60	M4×10			2.6	2.2
	FB□	50	10	70	W4×10	8	14		
Type II	FC□				M5×12				
Flange	GA□	70	6.5	90	M5×12	8	14	2.8	2.4
Type Ⅲ	GB□	70	0.5	90	M6×14	0	14		

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above


Check details of the dimensions and shape with the delivered specifications.

Contact us for information on special installation method.

- (Note) 1. A symbol for input shaft coupling is supplied in "□" in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications.

The differential range may differ depending on the method for manufacturing parts (molded articles, machining articles). Contact us for the differential range of the size that is not described

Measurement Table =

Table 055-1

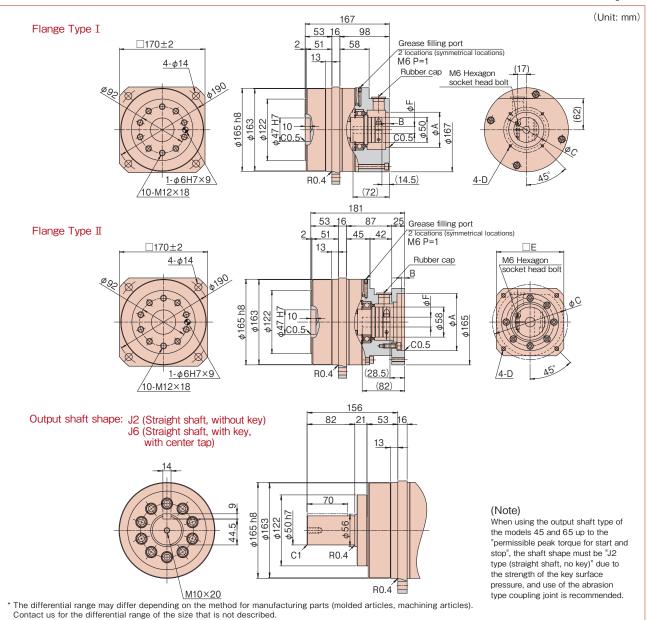
	Shape	A(H7)	В	С	D	Е	F(H	17)	G	Mass	(kg) ^{*2}
	symbol ⁻¹	Δ(117)	ם			_	Min	Max	J	Shaft output	Flange output
	KA□	50	10	70	M4×10						
Flange Type I	KB□	30	10	70	M5×12				_	6.4	
	KC□	60		99	M6×14						5
	KD□	70	7	90	M5×12	_	11	19			
	KE□	70	′	90	M6×14						
	KF□	80		100	1010 × 14						
	KI□	50	10	60	M4×10						
Flange	KG□	95	7	115	M6×12		11	19		6.6	5.2
Type II	KH□	90	′	113	M8×12	_	- 11	19	_	0.0	5.2
	KP□	95		115	M6×14	□120			160		
Flange	KQ□	90	6.5	115	M8×25	120	16	24	160	6.9	5.5
Type Ⅲ	KR□	110	0.5	145	IVIOXZO	□130	10	24	165		
	KS□	130		165	M10×25	□180			233	7.9	6.5

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.

Contact us for information on special installation method.

(Note) 1. A symbol for input shaft coupling is supplied in " \square " in shape symbols. See the model selection tool on the web page.


(URL:https://hds-tech.jp/)

2. The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 45 CSG-GH

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications.

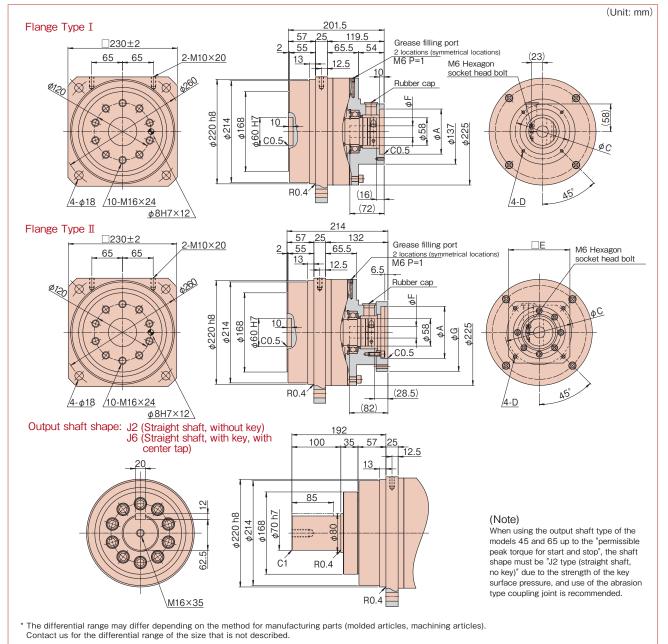
Fig. 056-1

Measurement Table ■

Table 056-1 Unit: mm

	Shape	A(H7) B C D E F(H7)		Mass	(kg)*2					
	symbol ¹	А(П1)	Б	٥	D	ш	Min	Max	Shaft output	Flange output
Flores	PA.	70	7	90	M5×12					
	PB□	70	,	30	M6×14					
	PC□	80		100	IVIOX 14					
Flange Type I	PD□	95		115	M8×20	_	14	24	17.3	14.3
Type 1	PE.	95	8		M6×14					
	PF.	110		130	M8×20					
	PG□	110		145	IVI6×20					
Поппп	PR□	110		145	M8×20	□130		24	16.7	13.7
Flange	PP.	114.3	6.5	200	M12×25	□ 100	19	٥٢	477	147
Type II	PQ□	130		165	M10×25	□180		35	17.7	14.7

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above. Check details of the dimensions and shape with the delivered specifications.


Contact us for information on special installation method.

- (Note) 1. A symbol for input shaft coupling is supplied in "
 "" in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - 2. The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications.

Fig. 057-1

Measurement Table

Table 057-1

	Shape	A(H7)	С	D	Е	F(l	H7)	G	Mass	(kg) ^{*2}
	symbol ^{*1}	Α(117)				Min	Max	d	Shaft output	Flange output
Flange Type I	UA□	95	115	M6×14		19	35	_	36.3	27.7
	UB□	90	115	M8×20	_				30.3	21.1
	UF□	110	145	M8×25	□130			165	36.4	27.8
Flange	UG□	114.3	200	M12×25			35	000	07.4	00.0
Type II	UH□	130	165	M10×25	□180	19		233	37.4	28.8
	UI□	200	235	M12×25	□220			270	38.4	29.8

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above. Check details of the dimensions and shape with the delivered specifications.

Contact us for information on special installation method.

(Note) 1. A symbol for input shaft coupling is supplied in "□" in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

^{2.} The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Rating Table CSF-GH =

CSF-GH series is standard-torque type HarmonicDrive® gear head.

The HarmonicDrive® CSF-GH series is especially suitable for a wide range of high technology fields requiring precision motion control such as the semiconductor or LCD production equipment, robot and machine tool industries.

Table 058-1

Model	Reduction ratio	Rated outp 2000 r	ut torque at /min. ⁻¹	Rated outp 3000 r/s		Permissible i average loa	max. value of ad torque *3	Permissi torque on s	ble peak start/stop *4	Permiss momentar	ible max. ry torque ^{'5}	Permissible average input rotational speed	Permissible max. input speed *6	Mass of rec Shaft output	ducer itself ⁷ Flange output
		N⋅m	kgf⋅m	N∙m	kgf∙m	N·m	kgf∙m	N·m	kgf⋅m	N⋅m	kgf⋅m	r/r	nin	kg	kg
	50	5.4	0.55	4.7	0.48	6.9	0.70	18	1.8	35	3.6				
14	80	7.8	0.80	6.8	0.70	11	1.1	23	2.4	47	4.8	3500	8500	0.62	0.50
	100	7.8	0.80	6.8	0.70	11	1.1	28	2.9	54	5.5				
	50	25	2.5	22	2.2	34	3.5	56	5.7	98	10				
	80	34	3.5	30	3.1	47	4.8	74	7.5	127	13			1.8	
20	100	40	4.1	35	3.6	49	5.0	82	8.4	147	15	3500	6500		1.4
	120	40	4.1	35	3.6	49	5.0	87	8.9	147	15				
	160	40	4.1	35	3.6	49	5.0	92	9.4	147	15				
	50	76	7.8	66	6.8	108	11	216	22	382	39				
	80	118	12	103	10	167	17	304	31	568	58				3.2
32	100	137	14	120	12	216	22	333	34	647	66	3500	4800	4.6	
	120	137	14	120	12	216	22	353	36	686	70]			
	160	137	14	120	12	216	22	372	38	686	70				
	50	176	18	154	16	265	27	500	51	950	97				
	80	313	32	273	28	390	40	706	72	1270	130				
45	100	353	36	308	31	500	51	755	77	1570	160	3000	3800	13	10
	120	402	41	351	36	620	63	823	84	1760	180				
	160	402	41	351	36	630	64	882	90	1910	195				
	80	745	76	651	66	1040	106	2110	215	3720	380				
0.5	100	951	97	831	85	1520	155	2300	235	4750	485	4000	0000		
65	120	951	97	831	85	1570	160	2510	256	4750	485	1900	2800 32	32	24
	160	951	97	831	85	1570	160	2630	268	4750	485				

- (Note) 1. Output torque set based on the life of $L_{10} = 7000$ hours when input rotational speed is 2000 r/min, which is the rated rotational speed of ordinary servo motors.
 - Output torque set based on the life of L₁₀ = 7000 hours when input rotational speed is 3000 r/min, which is the rated rotational speed of ordinary servo motors.
 - Permissible maximum value of average load torque calculated based on a load torque pattern (page 048).
 Note that exceeding this value may deteriorate the life or durability of the
 - Permissible maximum value of torque applied on start and stop in operation cycles.
 - Permissible maximum value for impact torque in an emergency stop and for external impact torque.
 - Operate within this range. Calculate the permissible frequency when selecting the model and check whether it meets the operating conditions.
- 6. Permissible maximum value of average load torque on non-continuous operation condition. The input rotational speed varies depending on operating environment or operating conditions. It is appropriate to regard the reference input speed during continuous operation as 3000 r/min. (Note) If HarmonicDrive® CSF-GH series is installed with the output shaft facing downward (motor faces upward) and continuously operated in one direction under the constant load state, lubrication failure may occur. *In this case, please contact the sales office of Harmonic Drive Systems Inc.
- The weight of a speed reducer itself. See dimension (pages 061 to 065) tables for values that include an input shaft coupling, motor flange and other parts.
- 8. The rated torque of the model number 65 is for input 2800 r/min.

Ratcheting Torque CSF-GH _____

Table 058-2 Unit: N·m

Model Reduction ratio	14	20	32	45	65
50	88	220	980	2700	_
80	110	350	1400	3900	11000
100	84	260	1000	3100	9400
120	-	240	980	2800	8300
160	_	220	980	2600	8000

Buckling Torque CSF-GH _____

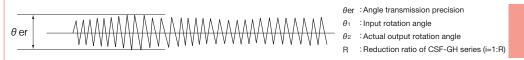
Unit: N·m

					Offic. Nº111
Model	14	20	32	45	65
Total reduction ratio	190	560	2200	5800	17000

Performance Table CSF-GH

CSF-GH series is standard-torque type HarmonicDrive® gear head.

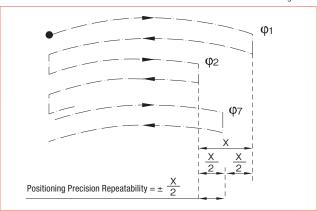
The HarmonicDrive® CSF-GH series is especially suitable for a wide range of high technology fields requiring precision motion control such as the semiconductor or LCD production equipment, robot and machine tool industries.


Table 059-1

Model	Shape symbol on input side 11	Reduction ratio		nsmission sion ^{*2}	Positioning Precision Repeatability *3	Starting	torque ^{*4}	Overdrive sta	rting torque ^{'5}	No-load runr	ning torque *6
			arc-min	×10 ⁻⁴ rad	arc-sec	cN⋅m	kgf⋅cm	N·m	kgf⋅m	cN⋅m	kgf⋅cm
		50				8.2	0.8	2.9	0.3	5.6	0.6
14	All products	80	1.5	4.4	±10	6.9	0.7	3.9	0.4	5.1	0.5
		100				6.6	0.7	4.7	0.5	4.6	0.5
		50				13	1.3	7.8	0.8	11	1.2
		80				10	1.0	9.6	1.0	10	1.0
	E□□	100	1.0	2.9	±8	9.6	1.0	12	1.2	10	1.0
		120				9.1	0.9	13	1.3	9.8	1.0
20		160				8.6	0.9	17	1.7	9.6	1.0
		50				20	2.0	12	1.2	11	1.2
	F□□	80				17	1.7	16	1.6	10	1.0
	G□□	100	1.0	2.9	±8	16	1.7	19	2.0	10	1.0
	G	120				16	1.6	23	2.3	9.8	1.0
		160				15	1.6	29	3.1	9.6	1.0
	KP□ KQ□ KR□ KS□	50		2.9	±6	58	5.9	35	3.6	47	4.8
		80				46	4.7	44	4.5	42	4.3
		100	1.0			45	4.6	54	5.5	41	4.2
		120				42	4.3	61	6.2	40	4.1
32		160				41	4.2	79	8.1	40	4.1
32		50				50	5.1	30	3.1	47	4.8
	Products	80				38	3.9	37	3.8	42	4.3
	other than	100	1.0	2.9	±6	37	3.8	45	4.6	41	4.2
	above	120				34	3.5	49	5.1	40	4.1
		160				33	3.4	64	6.6	40	4.1
		50				123	13	74	7.8	120	12
		80				95	9.7	92	9.3	109	11
45	All products	100	1.0	2.9	±5	89	9.1	107	11	107	11
		120				85	8.7	123	13	105	11
		160				79	8.1	152	16	103	11
		80				186	19	179	18	297	30
65	All products	100	1.0	2.9	±4	166	17	200	20	289	30
00	All products	120	1.0	2.9	±4	156	16	226	23	285	29
		160				139	14	268	27	278	28

- (Note) 1. The shape symbols indicate the motor flange shape and input shaft joint shape of the model (refer to P007). (Upper 2 digits indicate the motor flange shape, and lower 1 digit indicates the input shaft joint shape.)
 - 2. Angle transmission precision indicates the difference between logical rotating angle and the actual rotating angle of output when any rotating angle is given as an input. The values in the table are maximum values.

Fig. 059-1


Table 059-2

H . neduction faile of Cor-dn series (i=1.n)

3. The positioning precision repeatability is determined by repeating positioning in a given position from the same direction seven times, by measuring stop positions of the output shaft and by calculating the maximum difference. Measured values are indicated in angles (degrees) and are prefixed with "±" to 1/2 of the maximum differences. The values in the table are maximum values.

Fig. 059-2

4. Starting torque means the momentary "starting torque" with which the output side starts rotation when a torque is applied on the input side. The values in the table are maximum values.

Measuring condition

Load	No load
Speed reducer surface temperature	25°C

5. Overdrive starting torque means the momentary "starting torque" with which the input side starts rotation when a torque is applied on the output side. The values in the table are maximum values.

Measuring condition

Table 059-

Load	No load
Speed reducer surface temperature	25°C

No-load running torque means the torque on the input side required to put the speed reducer under a no-load condition. The values in the table are average values.

Measuring condition

Table 059-4

Input speed	2000 r/min
Load	No load
Speed reducer surface temperature	25°C

Rigidity (Spring constant) CSF-GH

Table 060-1

Symbol	_	Model	14	20	32	45	65
	T ₁	N⋅m	2.0	7.0	29	76	235
		kgf⋅m	0.2	0.7	3.0	7.8	24
	T ₂	N⋅m	6.9	25	108	275	843
	12	kgf⋅m	0.7	2.5	11	28	86
	K ₁	×10 ⁴ N·m/rad	0.34	1.3	5.4	15	_
	IXI	kgf·m/arc-min	0.1	0.38	1.6	4.3	_
	K ₂	×10 ⁴ N·m/rad	0.47	1.8	7.8	20	_
	N2	kgf·m/arc-min	0.14	0.52	2.3	6.0	-
Reduction ratio	K₃	×10⁴N·m/rad	0.57	2.3	9.8	26	_
50	K ₃	kgf·m/arc-min	0.17	0.67	2.9	7.6	_
	θ1	×10⁻⁴rad	5.8	5.2	5.5	5.2	_
	Ø1	arc-min	2.0	1.8	1.9	1.8	_
	0 ₂	×10 ⁻⁴ rad	16	15.4	15.7	15.1	-
	O 2	arc-min	5.6	5.3	5.4	5.2	-
	K ₁	×10 ⁴ N·m/rad	0.47	1.6	6.7	18	54
	IN1	kgf·m/arc-min	0.14	0.47	2.0	5.4	16
	K ₂	×10⁴N·m/rad	0.61	2.5	11	29	88
	N2	kgf·m/arc-min	0.18	0.75	3.2	8.5	26
Reduction ratio	K₃	×10⁴N·m/rad	0.71	2.9	12	33	98
80 or more	r\3	kgf·m/arc-min	0.21	0.85	3.7	9.7	29
	θ1	×10 ⁻⁴ rad	4.1	4.4	4.4	4.1	4.4
	Ø 1	arc-min	1.4	1.5	1.5	1.4	1.5
	_	×10 ⁻⁴ rad	12	11.3	11.6	11.1	11.3
	θ 2	arc-min	4.2	3.9	4.0	3.8	3.9

See page 046 for a description of terms. * The values in this table are average values.

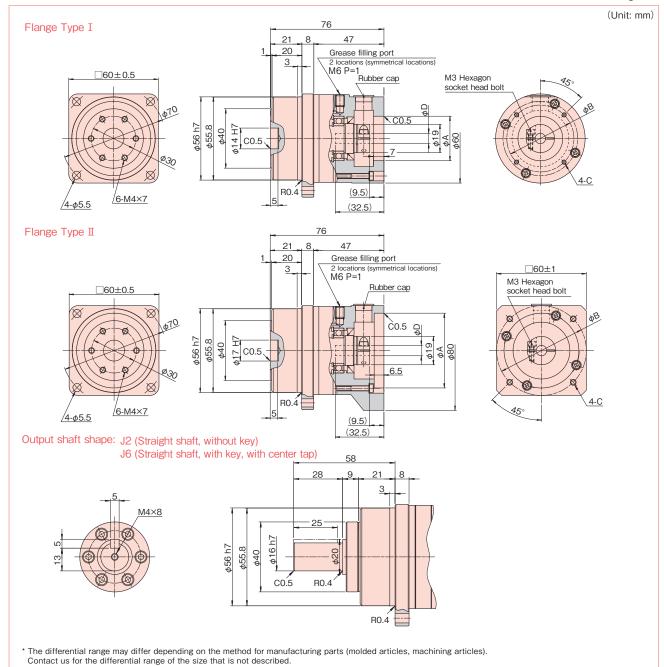
Hysteresis Loss CSF-GH:

Reduction ratio 50: Approx. 5.8 x 10⁴ rad (2arc-min)
Reduction ratio 80 or more: Approx. 2.9 x 10⁴ rad (1arc-min)

See page 046 for a description of terms.

Max. Backlash Quantity CSF-GH

Table 060


Reduction ratio	Model	14	20	32	45	65
50	×10 ⁻⁵ rad	17.5	8.2	6.8	5.8	_
50	arc-sec	36	17	14	12	_
90	×10 ⁻⁵ rad	11.2	5.3	4.4	3.9	2.9
80	arc-sec	23	11	9	8	6
100	×10⁻⁵rad	8.7	4.4	3.4	2.9	2.4
100	arc-sec	18	9	7	6	5
120	×10 ⁻⁵ rad	-	3.9	2.9	2.4	1.9
120	arc-sec	-	8	6	5	4
160	×10 ⁻⁵ rad	-	2.9	2.4	1.9	1.5
100	arc-sec	_	6	5	4	3

See page 046 for a description of terms.

Dimensional Outline Drawing - Model No. 14 CSF-GH

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

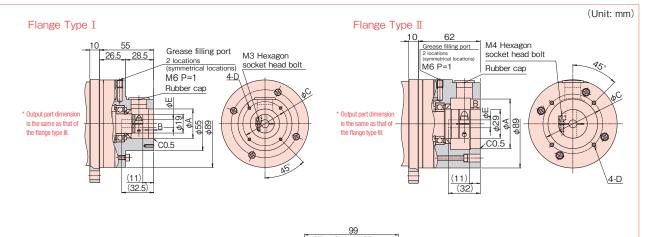
Fig. 061-1

Measurement Table ===

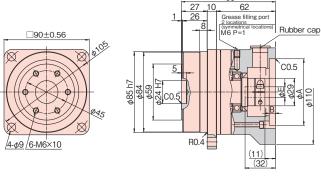
Table 061-1 Unit: mm

	Shape	A(H7)	В	С	D(ł	H7)	Mass (kg) ⁻²		
	symbol ⁻¹	A(117)	ם)	Min	Max	Shaft output	Flange output	
Поппп	AB□		45	M3×8					
Flange Type I	AC□	AC 30 46 M4×10		M4×10	6	8	0.88	0.76	
Type 1	AD.	34	48	48 M3×8					
Elango	BA□		60	M4×10					
Flange Type II	BB□	50	70	1VI4 X T U	6	8	0.9	0.78	
туре п	BC□		70	M5×12					

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.


Check details of the dimensions and shape with the delivered specifications. Contact us for information on special installation method. $\begin{tabular}{c} \begin{tabular}{c} \begin{t$

- (Note) 1. A symbol for input shaft coupling is supplied in "□" in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - 2. The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.



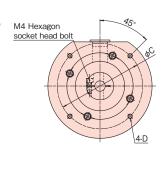
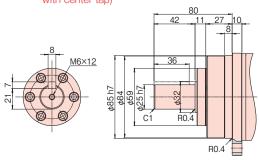

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 062-1



Output shaft shape: J2 (Straight shaft, without key) J6 (Straight shaft, with key, with center tap)

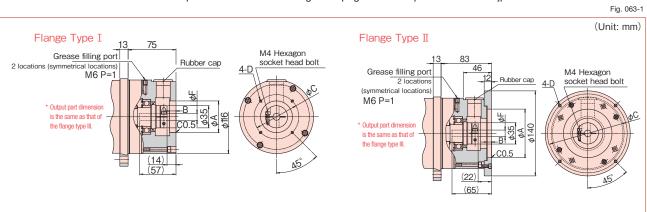
* The differential range may differ depending on the method for manufacturing parts (molded articles, machining articles). Contact us for the differential range of the size that is not described.

Measurement Table =

Table 062-1 Unit: mn

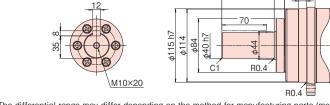
									OTHE. ITHII	
	Shape	A(H7)	В	С	D	E(H	H7)	Mass (kg) ^{*2}		
	symbol ¹¹	А(П7)	Б	٥	ט	Min	Max	Shaft output	Flange output	
Elango	EA□	30	5	45	M3×8					
Flange Type I	EB□	30	3	46	M4×10	7	8	2.3	1.9	
Type 1	EC□	34	6	48	M3×8					
Папа	FA□			60	M4×10					
Flange Type II	FB□	50	10	70	W4×10	8	14	2.6	2.2	
туре п	FC□			70	M5×12					
Flange	GA□	70	6.5	90	M5×12	8	14	2.8	2.4	
Type I II	GB□	,,,	0.5	90	M6×14	Ů	14	2.0	2.4	

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed


Check details of the dimensions and shape with the delivered specifications.

Contact us for information on special installation method.

- (Note) 1. A symbol for input shaft coupling is supplied in "□" in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.


Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

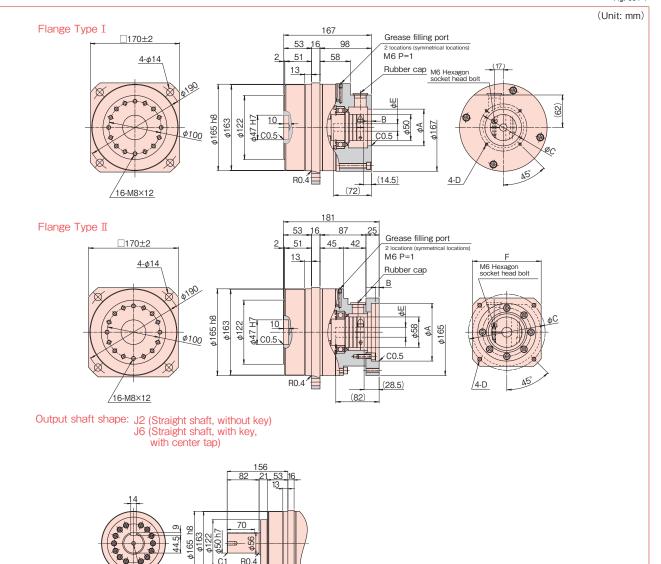
35 13

* The differential range may differ depending on the method for manufacturing parts (molded articles, machining articles). Contact us for the differential range of the size that is not described.

Measurement Table _____

Table 063-1

	Shape	A(H7)	В	С	D	Е	F(H7)		G	Mass (kg)*2		
	symbol ^{*1}	A(117)	Ь					Max	G	Shaft output	Flange output	
	KA□	50	10	70	M4×10							
	KB□	50	10	70	M5×12							
Flange	KC□	60		99	M6×14							
Type I	KD□	70	7	90	M5×12	-	11	19	_	6.4	5	
Type I	KE□	70	,	90	M6×14							
	KF.	80		100	1010 × 14							
	KI□	50	10	60	M4×10							
Flange	KG□	95	7	115	M6×12		11	19		6.6	5.2	
Type II	KH□	90	′	110	M8×12	_		19		0.0	5.2	
	KP□	95		115	M6×14	□120			160			
Flange	KQ□	90	6.5	113	M8×25	□120	16	24	100	6.9	5.5	
Type I I	KR□	110	0.0	145	IVIOXZO	□130	10		165			
	KS□	130		165	M10×25	□180			233	7.9	6.5	


Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above. Check details of the dimensions and shape with the delivered specifications. Contact us for information on special installation method.

- (Note) 1. A symbol for input shaft coupling is supplied in "□" in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - 2. The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

High-performance Gear Heads for Servo Motors series

Dimensional Outline Drawing – Model No. 45 CSF-GH

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

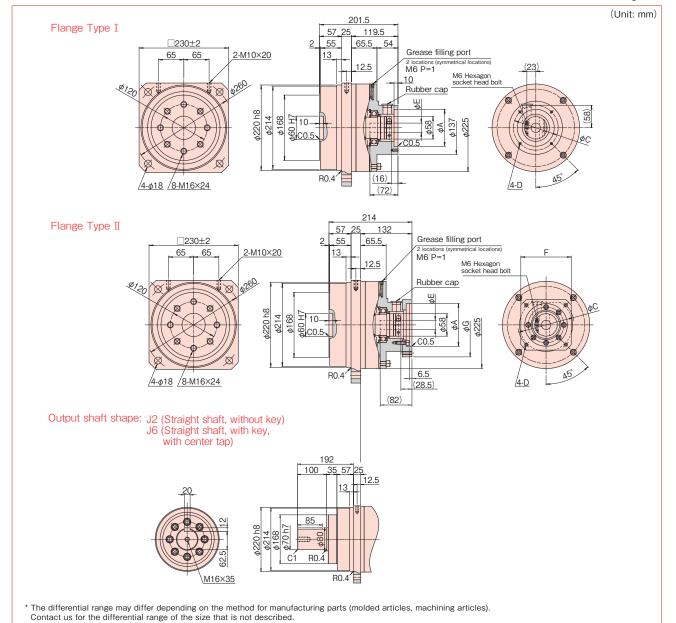
The differential range may differ depending on the method for manufacturing parts (molded articles, machining articles). Contact us for the differential range of the size that is not described.

Measurement Table ===

Table 064-1

										OTHE THIS	
	Shape	A(H7)	В	С	D	E(I	H7)	F	Mass (kg) ^{*2}		
	symbol ¹¹	A(117)	Ь			Min	Max		Shaft output	Flange output	
	PA□	70	7	90	M5×12	14	24				
	PB□	70	'	90	M6×14			_	17.3	14.3	
Elongo	PC□	80		100	IVIOX 14						
Flange Type I	PD□	95		115	M8×20						
Type I	PE.	95	8	110	M6×14						
	PF□	110		130	M8×20						
	PG□	110		145	IVIOXZU						
Elango	PR□	110		145	M8×20		24	□130	16.7	13.7	
Flange Type II	PP□	114.3	6.5	200	M12×25	19	35	□180	17.7	14.7	
туре п	PQ□	130		165	M10×25		33	□180	17.7	14.7	

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above. Check details of the dimensions and shape with the delivered specifications.


Contact us for information on special installation method.

- (Note) 1. A symbol for input shaft coupling is supplied in "□" in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - 2. The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

Dimensional Outline Drawing - Model No. 65 CSF-GH

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 065-1

Measurement Table ==

Table 065-1

	Shape	A(H7)	С	D	E(H	H7)	_	G	Mass (kg) ²		
	symbol ^{*1}	A(117)			Min	Max		G	Shaft output	Flange output	
Flange	UA□	95	115	M6×14	10	35			36.2	27.6	
Type I	UB□	95	115	M8×20	//8×20 19				30.2	27.0	
	UF□	110	145	M8×25		35	□130	165	36.3	27.7	
Flange	UG□	114.3	200	M12×25	19			233	37.3	28.7	
Type II	UH□	130	165	M10×25	19		□180		37.3	20.7	
	UI□	200	235	M12×25			□220	270	38.3	29.7	

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications

Contact us for information on special installation method.

- (Note) 1. A symbol for input shaft coupling is supplied in "□" in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)
 - 2. The mass varies slightly depending on the reduction ratio and on the inside diameter of input shaft coupling.

HarmonicF HPG Series Harmonic CSG/CSF-C

HarmonicPlanetary
HPG Series (Planetary speed reducer type)
HarmonicDrive
CSG/CSF-GH Series (HarmonicDrive® speed reducer type)

Gear Head Series CONTENTS

HarmonicPlanetary® HPG Series Orthogonal Shaft Type

Structural Drawing	067
Model Number Selection ·····	068
Rating Table	070
Performance Table	07-
Torque - Torsion Characteristic	072
Dimensional Outline Drawing	07:

Harmonic Planetary® HPG Orthogonal Shaft Type

Size

Model: 32, 50, 65

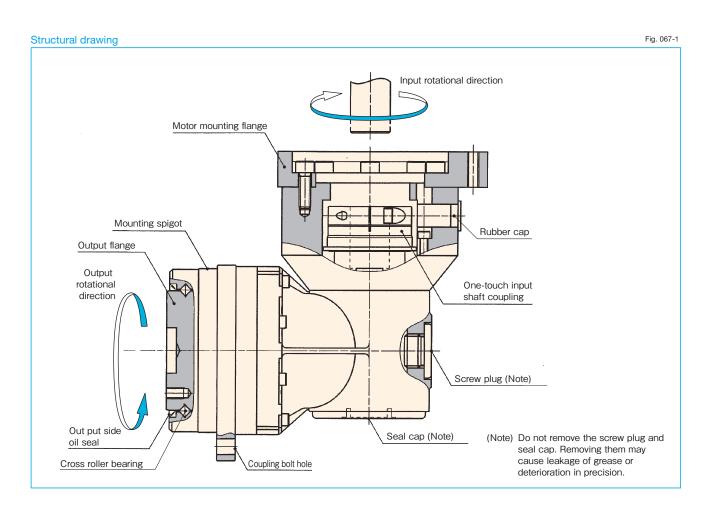
Peak torque

150 N·m to 2200 N·m

Reduction ratio

1-stage reduction=5 2-stage reduction= 11 to 50

Small backlash


Standard: 3 min. or less

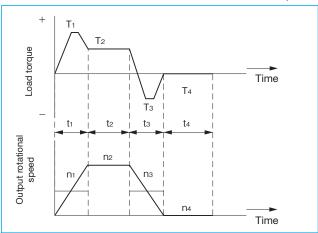
Can be mounted to servo motors of many manufacturers

Yasukawa Electric, Mitsubishi Electric, Fanuc, Panasonic, Sanyo Denki, Fuji Electric, Toshiba For other servo motors, please feel free to contact the nearest sales office.

* See the model selection tool on the web page to find matching model on each company's servo motors. (URL:https://hds-tech.jp/)

Model Number Selection

Check your operating conditions and select suitable model Nos. based on the flowchart to fully demonstrate the excellent performance of the Harmonic Planetary® HPG series.


Gearhead Series HPG Orthogonal Shaft Type

In general, the servo system is rarely in a continuous constant load state. The load torque changes according to the input rotational speed variation and comparatively large torque are applied at start and stop. Unexpected impact torque may be applied. Check your operating conditions against the following load torque pattern and select suitable model Nos. based on the flowchart shown on the right. Also check the life and static safety coefficient of the cross roller bearing and input side main bearing (input shaft type only). (See the specification of the input side main bearing and the output side main bearing on pages 114 to

■ Checking the load torque pattern

First, you need to look at the picture of the load torque pattern. Check the specifications shown in the figure below.

Graph 068-1

Obtain the value of each load torque pattern.

Load torque	T ₁ to T _n (N·m)
Time	t1 to tn (sec)
Output rotational speed	n1 to nn (r/min)

<Normal operation pattern>

Starting time	T1, t1, n1
Steady operation time	T2, t2, n2
Stopping (slowing) time	T3, t3, n3
Break time	T4, t4, n4

um retetional anace

<iwaximum rotational="" speed=""></iwaximum>	
Max. output rotational speed	no $max \ge n1$ to nn
Max. input rotational speed	ni $max \ge n1 \times R$ to $nn \times R$
(Restricted by motors)	R: Reduction ratio
<lmpact torque=""></lmpact>	

When impact torque is applied

<Required life>

 $L_{10} = L$ (hours)

Flowchart of model number selection

Select a model number according to the following flowchart. If you find a value exceeding that from the ratings, you should review it with the upper-level model number or consider reduction of conditions including the load torque.

Calculate the average load torque applied on the output side of HarmonicDrive® from the load torque pattern: Tav (N·m).

$$Tav = \underbrace{\frac{10/3}{|h_1| \cdot t_1 \cdot |T_1|^{10/3} + |h_2| \cdot t_2 \cdot |T_2|^{10/3} + \dots + |h_n| \cdot t_n \cdot |T_n|^{10/3}}_{n_1 \cdot t_1 + n_2 \cdot t_2 + \dots + n_n \cdot t_n}$$

Calculate the average output speed based on the load torque pattern: no av (r/min)

no
$$av = \frac{|n_1| \cdot t_1 + |n_2| \cdot t_2 + \dots + |n_n| \cdot t_n}{t_1 + t_2 + \dots + t_n}$$

Select a model number temporarily with the following condition: Tav ≤ Average load torque (See the rating table on page 070)

Check the description in Caution below.

Review of the operation conditions, model No and reduction ratio

Determine the reduction ratio (R) based on the maximum output rotational speed (no max) and maximum input rotational speed (ni max).

(A limit is placed on ni max by motors.) Calculate the maximum input rotational speed (ni max) from the maximum output rotational speed (no max) and the reduction ratio (R). ni max=no max · R

Calculate the average input rotational speed (ni av) from the average output rotational speed (no av) and the reduction ratio (R): ni av = no av R ≦ Permissible average input rotational speed (nr).

Check whether the maximum input rotational speed is equal to or less than the values in the rating table.
ni *max* ≤ maximum input rotational speed (r/min)

Check whether T_1 and T_3 are equal to or less than the permissible peak torque (N·m) value at start and stop from the ratings.

Check whether Ts is equal to or less than the permissible maximum momentary torque (N·m) value from the ratings

Calculate the lifetime and check whether it meets the specification requirement

Tr: Output torque

nr: Permissible average input rotational speed

$$L_{10}$$
=20000 $\cdot \left(\frac{T_r}{Tav}\right)^{10/3} \cdot \left(\frac{n_r}{n_l av}\right)$ (Hour)

The model number is determined.

Caution

Check impacts by speed reducer temperature rise, vibration during acceleration and deceleration and other factors if the operating conditions are as specified below. Study to "increase the speed reducer size", "review the operating conditions" and other means if it becomes necessary to study safety. Exercise reasonable caution especially when operating

conditions are close to continuous operation.

Average load torque (Tav) > Permissible maximum value of average load torque (see page 070) Calculate average input rotational speed (ni av) > Permissible average input rotational speed (nr)

Value of each load torque pattern.

Load torque Tn (N·m) Time tn (sec) Output rotational speed nn (r/min) <Maximum rotational speed> Max. output rotational speed Max. input rotationalspeed

no max = 120 r/minni max = 5,000 r/min(Restricted by motors)

<Normal operation pattern>

 $T_1 = 220 \text{ N} \cdot \text{m}$, $t_1 = 0.5 \text{ sec}$, $t_1 = 60 \text{ r/min}$ Starting time Steady operation time $T_2 = 50 \text{ N} \cdot \text{m}$, $t_2 = 2.7 \text{ sec}$, $n_2 = 120 \text{ r/min}$

When impact torque is applied Ts = 180 N·m

Stopping (slowing) time $T_3 = 55 \text{ N} \cdot \text{m}$, $t_3 = 0.8 \text{ sec}$, $t_3 = 60 \text{ r/min}$ $T_4 = 0 \text{ N} \cdot \text{m}$ $t_4 = 5 \text{ sec},$

<Required lifespan> $L_{10} = 20,000 \text{ (hours)}$

<Impact torque>

Calculate the average load torque applied on the output side based on the load torque pattern: Tav (N·m).

$$Tav = \underbrace{-^{10/3} \sqrt{\frac{|60 \text{r/min}| \cdot 0.5 \text{sec} \cdot |220 \text{N} \cdot \text{m}|^{10/3} + |120 \text{r/min}| \cdot 2.7 \text{sec} \cdot |55 \text{N} \cdot \text{m}|^{10/3} + |60 \text{r/min}| \cdot 0.8 \text{sec} \cdot |55 \text{N} \cdot \text{m}|^{10/3}}_{|60 \text{r/min}| \cdot 0.5 \text{sec} + |120 \text{r/min}| \cdot 2.7 \text{sec} + |60 \text{r/min}| \cdot 0.8 \text{sec}}}$$

Calculate the average output rotational speed based on the load torque pattern: no av (r/min)

0.5sec+2.7sec+0.8sec+5sec

Select a model number temporarily with the following conditions. $Tav = 104N \cdot m \le 170N \cdot m$. (HPG-32A-21-RA3 is temporarily selected based on the average load torque (see the rating table on page 070) of model No. 32 and reduction ratio of 21.)

Determine a reduction ratio (R) based on the maximum output rotational speed (no max) and maximum input rotational speed (ni max).

5,000 r/min = 41.7 ≥ 21

120 r/min

Calculate the maximum input rotational speed (ni max) from the maximum output rotational speed (no max) and reduction ratio (R): ni max = 120 r/min • 21 = 2,520 r/min

Calculate the average input rotational speed (ni av) from the average output speed (no av) and reduction ratio (R): ni $av = 44.7 \text{ r/min} \cdot 21=939 \text{ r/min} \leqq \text{Permissible}$ average input rotational speed of model No. 32 1500 (r/min)

Check whether the maximum input rotational speed is equal to or less than the values specified in the rating table.

ni max = 2520 r/min ≤ 6000 r/min (maximum input rotational speed of model No. 32)

Check whether T₁ and T₃ are equal to or less than the peak torques (N·m) on start and stop in the rating table.

T₁ = 220 N·m ≤ 300 N·m (Peak torques on start and stop of model No. 32)

 $T_3 = 55 \text{ N} \cdot \text{m} \le 300 \text{ N} \cdot \text{m}$ (Peak torques on start and stop of model No. 32)

Check whether Ts is equal to or less than the values of the momentary max. torque (N·m) in the rating table

Ts = 180 N·m ≤ 650 N·m (momentary max. torque of model No. 32)

Calculate life and check whether the calculated life meets the requirement.

L₁₀ = 20,000 •
$$\left(\frac{98 \text{ N·m}}{104 \text{ N·m}}\right)^{10/3}$$
 • $\left(\frac{1,500 \text{ r/min}}{939 \text{ r/min}}\right)$ = 26,200 (hours) ≥ 20,000 (hours)

As a result of the preceding steps, HPG-32A-21-RA3 is determined.

page 068

Check the description in Caution at the bottom of

Review of the operation conditions, model No and reduction ratio.

Rating Table =

HPG series orthogonal shaft type has a variety of 3 model numbers. For selecting the model number, refer to the rating table.

Table 070-1

Model	Orthogonal model			mentary	nentary ave. input		Inertia moment (equiv. value on input side) 17 Shaft output Flange output		Mass ¹⁸ Shaft output Flange output							
			N·m	kgf⋅m	N⋅m	kgf⋅m	N⋅m	kgf⋅m	N·m	kgf⋅m	r/min	r/min	×10 ⁻⁴ kg·m ²	×10 ⁻⁴ kg·m ²	kg	kg
		5	66	6.7	150	15	150	15	200	20			4.1	3.9	7.4	6.0
	i i	11	88	9.0	ĺ				440	45	ĺ		3.7	3.6	ĺ	
00	DAG	15	92	9.4	170	17			600	61	4500	0000	3.5	3.4	1	
32	RA3	21	98	10	1		300	31			1500	6000	3.2	3.2	7.9	6.5
		33	108	11	000	00	.		650	66			3.0	2.9	1	
		45	108	11	200	20							2.9	2.9	1	
		5	150	15	150	15	150	15	200	20			9.9	8.6	20	17
		11	200	20 330 34 330 34 440 45		6.8	6.5									
	RA3	15	230	24	450	450 46	450	46	600	61	1500 4500	4500	6.2	6.1	21	
	HAS	21	260	27			630	64	840	86	1500	4500	4.9	4.8		18
		33	270	28	500	51	850	87	1320	135			3.8	3.8		
50		45	270	28	1		030	87	1800	184			3.8	3.7	1	
50		5	170	17	340	35	400	41	500	51			32	31	21	18
		11	200	20	400	41			1100	112		4500	29	28	22	
	RA5	15	230	24	450	46			1500	153			28	28		19
	RAS	21	260	27			850	87			1300		27	27		
		33	270	28	500	51			1850	189			26	26		
		45	270	28									26	26		
		5	400	41	400	41	400	41	500	51			55 ^{*9}	46	45 ^{*9}	35
		12	600	61	960	98	960	98	1200	122			44 ^{*9}	42		
			122	1500	153			43 ^{*9}	41							
65	RA5	20	800	82	1500		1600	163	2000	204	1300	3000	33 ⁻⁹	32	60"9	50
		25	850	87	1500	153	2000	204	2500	255			32 ^{*9}	32		50
		40	640	65	1300	103	1900	194	4000	408			27 ^{*9}	27		
		50	750	77	1500		2200	224	4500	460			27 ^{*9}	27		

- (Note) 1. Output torque set based on the life of $L_{10} = 20000$ hours when input rotational speed is 3000 r/min, which is the rated rotational speed of ordinary servo motors. Models 50 and 65 are set at 2000 r/min as the rated rotational speed and at $L_{10} = 20000$ hours as the life for the servo motor to be combined.
 - 2. Permissible maximum value of average load torque calculated based on a load torque pattern (page 068). A life of 2000 hours or more is a criterion when operated at an input speed of 2000 r/min.
 - 3. Permissible maximum value of torque applied on start and stop in operation cycles.
 - 4. Permissible maximum value for impact torque in an emergency stop and for external impact torque.

Operation exceeding these ranges may cause damages to reducers.

- 5. Permissible maximum value of average input rotational speed during operations. Make it a point to operate below this value especially when the operation mode is near continuous operation.
- 6. Permissible maximum input rotational speed in operation modes other than continuous operation.
- 7. The value for a speed reducer itself. Values that include the input shaft coupling are shown in the model selection tool on the web page. (URL:https://hds-tech.jp/)
- 8. The weight of a speed reducer itself. Please ask for details.
- 9. The standard specification is flange output. Shaft output is a customized specification.

nance Gear Heads for Servo Motors series

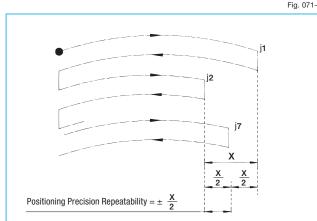
											Table 071-1											
Model	Orthogonal	Reduction	Angle transmis	sion precision *1	Repeatability *2	Starting	torque *3	Overdrive sta	arting torque *4	No-load run	ning torque *5											
Model	model	ratio	arc-min	×10 ⁻⁴ rad	arc-sec	cN⋅m	kgf⋅cm	N⋅m	kgf⋅m	cN⋅m	kgf⋅cm											
		5				64	6.5	3.3	0.34	179	18											
		11				58	5.9	6.8	0.69	162	17											
00	DAG	15	1	44.0	.45	56	5.7	8.9	0.91	455	40											
32	RA3	21	4.0	11.6	±15	53	5.4	12	1.2	155	16											
		33	1			48	4.9	17	1.7													
		45	1			47	4.8	23	2.3	150	15											
		5				111	11	5.8	0.59	241	25											
		11				76	7.8	8.9	0.91	198	20											
	D	15	1		45	71	7.2	11	1.2	470	-10											
	RA3	21	4.0	11.6	±15	69	7.0	15	1.6	173	18											
		33				61	6.2	21	2.2	101	40											
50		45	1			59	6.0	28	2.9	161	16											
50		5			±15	132	14	6.9	0.70	496	51											
		11	1						97	9.9	11	1.2	459	47								
	D. 5	15	1			92	9.4	15	1.5	407	45											
	RA5	21	3.0	8.7		±15	±15	±15	90	9.2	20	2.1	437	45								
		33																			82	8.4
		45				80	8.2	38	3.9	427	44											
		5				292	30	15	1.6	647	66											
		12]			177	18	23	2.3	532	54											
		15]			162	17	26	2.6	513	52											
65	RA5	20	3.0	8.7	±15	147	15	31	3.2	494	50											
		25]			136	14	36	3.7	481	49											
		40				127	13	51	5.2	460	47											
		50	1			122	12	61	6.2	453	46											

(Note) 1. Angle transmission precision indicates the difference between (1) logical rotating angle and (2) actual rotating angle of output when any rotating angle is given as an input. The values in the table are maximum values.

2. The repeatability is determined by repeating positioning in a given position from the same direction seven times, by measuring stop positions of the output shaft and by calculating the maximum difference. Measured values are indicated in angles (degrees) and are prefixed with "±" to 1/2 of the maximum differences. The values in the table are maximum values.

starts rotation when a torque is applied on the input side. The values in the table are Table 071-2

3. Starting torque means the momentary "starting torque" with which the output side


Load	No load
HPG speed reducer surface temperature	25°C

4. Overdrive starting torque means the momentary "starting torque" with which the input side starts rotation when a torque is applied on the output side. The values in the table are maximum values.

Load	No load
HPG speed reducer surface temperature	25°C

 $\ensuremath{\mathsf{5}}.$ No-load running torque means the torque on the input side required to put the speed reducer under a no-load condition. The values in the table are average values

lowet an and	Orthogonal model RA3	1500r/min	
Input speed	Orthogonal model RA5	1300r/min	
Load		No load	
HPG speed reducer surface temperature		25°C	

Torque - Torsion Characteristic

			Backlash		Torsional quantity on	Torsional quantity on one side at TR X 0.15		al rigidity
Model	Orthogonal model	Reduction ratio			D		A/B	
		arc-min	×10 ⁻⁴ rad	arc-min	×10 ⁻⁴ rad	kgf·m/arc-min	×100N·m/rad	
	5					2.2	740	
	RA3	11		8.7	1.9	5.5	2.4	820
32		15	3.0				2.5	850
02	TIAG	21	5.0				2.6	880
		33					2.7	900
		45						910
		5		3.0 8.7	2.7	7.9	3.9	1300
		11			2.1 6.1		9.3	3100
	RA3	15	3.0			6.1	11	3800
	RA3	21					13	4300
		33					14	4700
50		45						4800
50		5			1.7	4.9	7.5	2500
		11				1.8 5.2	12	4100
	RA5	15	3.0	8.7			13	4500
	HA5	21	3.0	0.7	1.8		14	4700
		33					15	4900
		45	1					5000
		5			2.3	6.7	10	3400
		12					26	8600
		15		.0 8.7		5.8	29	9800
65 RA5	RA5	20	3.0				32	11000
	25				2.0		34	

■Torsional rigidity (windup curve)

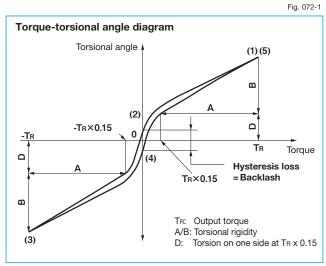
Anchoring the speed reducer input and casing and applying a torque to the output part will generate torsion in the output part in accordance with the applied torque. Change the torque slowly in the order of: (1) Forward output torque, (2) Zero, (3) Reverse output torque, (4) Zero and (5) Forward output torque. A loop of (1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) will be drawn in Fig. 072-1.

The inclination in the region from "0.15 x output torque" to "Output torque" is small. The torsional rigidity of the HPG series is an average value of this inclination. The inclination in the region from "zero torque" to "0.15 x output torque" is large. This is caused by uneven distribution such as fine uneven contact of the engaging parts and load of the planet gears under a light load.

■Calculation of total torsional quantity (Windup)

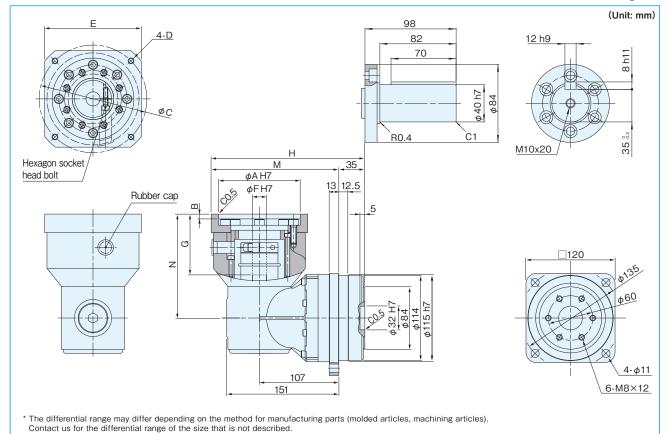
The method to calculate the total torsional quantity (average value) on one side when the speed reducer applies a load in a no-load state.

Formula 072-1 Calculation formula $\theta = D +$ Symbols in calculation formula Α Total torsional quantity Torsional quantity on one side ח See Fig. 072-1, Table 072-1 at output torque x 0.15 torque Load torque Output torque x 0.15 torque (=T_R x 0.15) See Fig. 072-1 TL See Fig. 072-1, Table 072-1 A/B Torsional rigidity


■Backlash (Hysteresis loss)

The zero-torque width (2) - (4) in Fig. 072-1 "Torque-torsional angle diagram" is called a hysteresis loss. The hysteresis loss between "Forward output torque" and "Reverse output torque" is defined as backlash of the HPG series. At the time of pre-shipment factory inspection, the backlash of the HPG series is less than 3 minutes.

36


37

12000

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 073-1

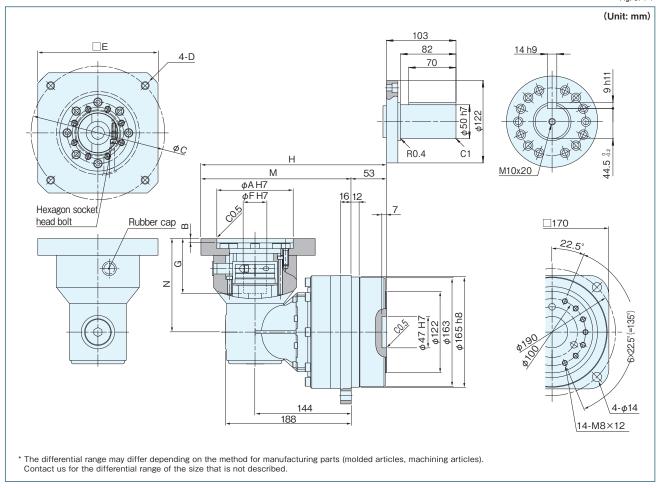
Measurement Table =

Table 073-1 Unit: mm

	Shape						F(H	H7)					Mass	s (kg)
	symbol *1	A(H7)	В	С	D	Е	Min	Max	G	Н	М	N	Shaft output	Flange output
ed = 5)	NF□	95	10	115	M8×18	φ135		24	56	209.5	174.5	115	9.7	8.3
age sp on typ ratio	NJ□	95	10	115	M6×12	φισσ	10	24	56	209.5	174.5	115	9.7	6.3
Single-stage speed reduction type (Reduction ratio = 5)	ВА□	110	6.5	145	M8×25	□130	10	35	81	207	172	140	10.3	8.9
Sin Rec	вв□	114.3	0.5	200	M12×25	□180		33	01	232	197	140	11.3	9.9
ed io io, 45)	NF□	95	10	115	M8×18	φ135		24	56	209.5	174.5	115	10.1	8.7
ge spe on typ ion rat 21, 33	NJ□	93	10	113	M6×12	φισσ	10	24	30	209.5	174.5	113	10.1	6.7
Dual-stage speed reduction type (Reduction ratio = 11, 15, 21, 33, 45)	ВА□	110	6.5	145	M8×25	□130	10	35	81	207	172	140	10.7	9.3
DQ - 30-1	ВВ□	114.3	0.5	200	M12×25	□180		03	01	232	197	140	11.7	10.3

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.


Contact us for information on speed reducers only and on special installation method.

(Note) 1. A symbol for input shaft coupling is supplied in " \Box " in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

Dimensional Outline Drawing - Model No. 50 RA3 ■

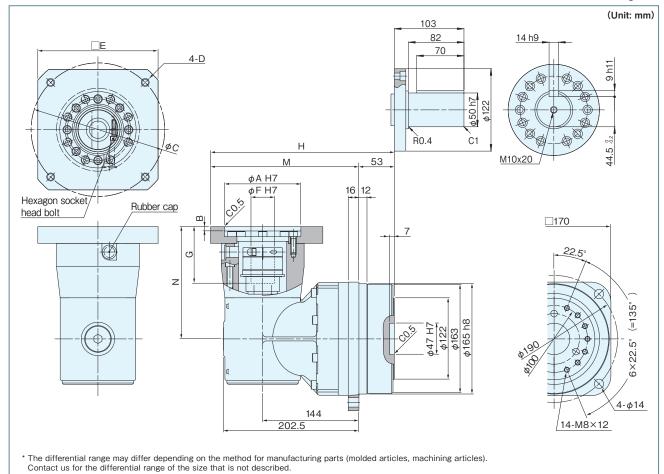
Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 074-1

Measurement Table =

Table 074-1 Unit: mm

	Shape	A(H7)	В		D	Е	F(l	H7)	G	Н	М	N	Mass	s (kg)
	symbol *1	Α(117)		C		_	Min	Max		- "	IVI	IN	Shaft output	Flange output
ed = 11,	ВА□	110	6.5	145	M8×25	□130		35	81	262	209	140	24	21
Dual-stage speed reduction type (Reduction ratio = 11 15, 21, 33, 45)	вв□	114.3	6.5	200	M12×25	□180	10	35	01	287	234	140	25	22
al-sta eductii uction 5, 21,	NF□	0.5	40	445	M8×18	1405	10	0.4		004.5	044.5	445	00.4	00.4
Du Red	NJ□	95	10	115	M6×12	φ135		24	57	264.5	211.5	115	23.4	20.4


Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above and reduction ratio = 5. Check details of the dimensions and shape with the delivered specifications.

Contact us for information on speed reducers only and on special installation method.

(Note) 1. A symbol for input shaft coupling is supplied in " \square " in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 075-1

Measurement Table ====

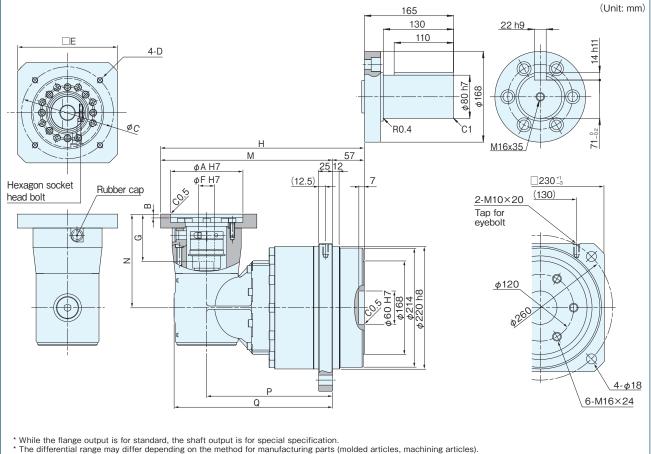
Table 075-1 Unit: mm

	Shape	A(H7)	В	С	D	Е	F(l	1 7)	G	Н	М	N	Mas	s (kg)
	symbol *1	Α(117)		_ ັ			Min	Max	"		IVI	IN	Shaft output	Flange output
speed type tio = 5)	BA□	110		145	M8×25	□130			84	262	209		23.7	20.7
ige sp on typ ratio	ВВ□	114.3	6.5	200	M12×25		19	42	04			168	24.9	21.9
Single-stage speed reduction type (Reduction ratio = 5)	BF□	130	0.5	165	M10×25	□180	19	42	85	287	234		24.9	21.9
Sing re (Red	СВ□	114.3		200	WITUX25				116			200	25.9	22.9
speed type rratio 33, 45)	BA□	110		145	M8×25	□130			84	262	209		25.3	22.3
ge sp on typ ion ra 21, 33	ВВ□	114.3	6.5	200	M12×25		19	42	04			168	26.5	23.5
Dual-stage speed reduction type (Reduction ratio : 11, 15, 21, 33, 45	BF□	130	0.5	165	M10×25	□180	19	42	85	287	234		20.5	23.5
Dual- redt (Red = 11, 7	СВ□	114.3		200	WI IUX25				116			200	27.5	24.5

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.

Contact us for information on speed reducers only and on special installation method.


(Note) 1. A symbol for input shaft coupling is supplied in "

"in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

Dimensional Outline Drawing - Model No. 65 ■

Only principal dimensions are shown in the dimension diagrams. Check the details of the dimensions with the delivered specifications. You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

Fig. 076-1

* The differential range may differ depending on the method for manufacturing parts (molded articles, machining articles). Contact us for the differential range of the size that is not described.

Measurement Table ===

Table 076-1

	Shape	A(H7)	В	С	D	Е	F(H	H7)	G	н	М	N	Р	Q	Mass	s (kg)
	Shape symbol ¹¹	Α(Π1)	Ь		D		Min	Max	<u> </u>		IVI	IN		Q	Shaft output	Flange output
Single-stage speed reduction type (Reduction ratio = 5)	СВ□	114.3	6.5	200	M12×25	□180	19	42	116	319	262	200	172	230.5	50.5	40.5
on type , , 50)	ВА□	110		145	M8×25	□130			0.4	348	291				57.6	47.6
d reductio ion ratio , 25, 40,	ВВ□	114.3	C.F.	200	M12×25		19	40	84			168	000	004.5	50.0	48.8
Dual-stage speed reduction type (Reduction ratio = 12, 15, 20, 25, 40, 50)	BF□	130	6.5	165	M10×25	□180	19	42	85	373	316		226	284.5	58.8	40.8
Dual-stag (F = 12,	СВ□	114.3		200	M12×25				116			200			59.8	49.8

Dimensions of only typical products are shown. Please contact us for dimensions of products not listed above.

Check details of the dimensions and shape with the delivered specifications.

Contact us for information on speed reducers only and on special installation method.

(Note) 1. A symbol for input shaft coupling is supplied in " \square " in shape symbols. See the model selection tool on the web page. (URL:https://hds-tech.jp/)

Gearhead Series HPG Orthogonal Shaft Type

HPGP Series Chamonic Plancing. High-performance Gear Heads for Servo Motors series

HPG Series (Helical Gear Type) Chamonis Plancens** High-performance Gear Heads for Servo Motors series

HPG Series (Standard Type) (Hamonic Planctary*) High-performance Gear Heads for Servo Motors series

HarmonicPlanetary®

Planetary Speed Reducer Unit Series

CONTENTS

HPF Hollow Shaft Unit Type

Structural Drawing ······	079
Model Number Selection	080
Rating Table • Performance Table · · · · · · · · · · · · · · · · · · ·	082
Torque - Torsion Characteristic	083
Dimensional Outline Drawing	084

HPG Input Shaft Unit Type

Structural Drawing	085
Model Number Selection	086
Rating Table	088
Performance Table	089
Torque - Torsion Characteristic	090
Dimensional Outline Drawing	091

Harmonic Planetary® HPF Hollow Shaft Unit Type

Size

Model: 25, 32

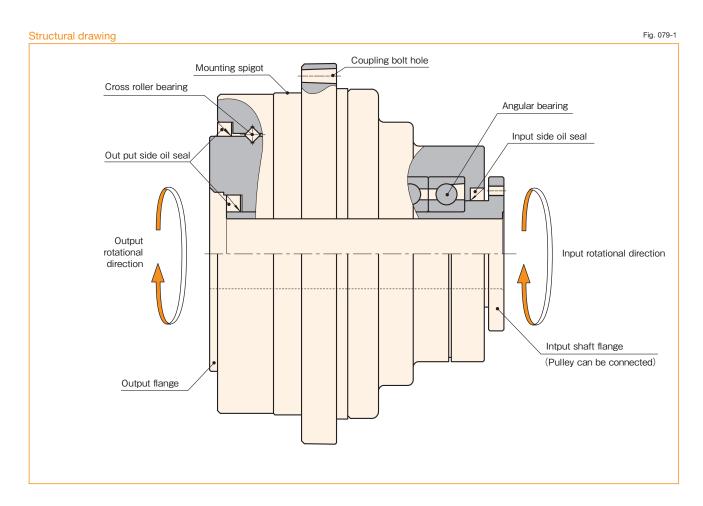
Peak torque

Model: $25 = 100 \text{ N} \cdot \text{m}$ Model: $32 = 220 \text{ N} \cdot \text{m}$

Reduction ratio

1 / 11


Small backlash

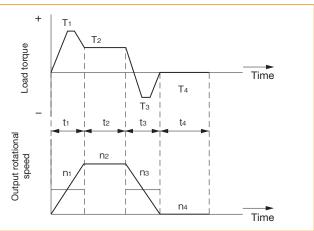

Standard: 3 min. or less

Inside diameter of the hollow shaft

Model: $25 = \phi 25 \text{ mm}$ Model: $32 = \phi 30 \text{ mm}$

The hollow structure unit has been developed based on Harmonic Planetary*. The superior performance and specifications of HPG series has been succeeded. Additionally, a hollow structure has been newly introduced to enjoy the shape advantage. The pass-through hole with the coaxial I/O shaft provides the compactly-designed devices to meet diversified customer needs, such as piping, wiring, and passing-through laser light or combining with a ball screw.

Model Number Selection


Check your operating conditions and select suitable model Nos. based on the flowchart to fully demonstrate the excellent performance of the Harmonic Planetary® HPF series.

In general, the servo system is rarely in a continuous constant load state. The load torque changes according to the input rotational speed variation and comparatively large torque are applied at start and stop. Unexpected impact torque may be applied. Check your operating conditions against the following load torque pattern and select suitable model Nos. based on the flowchart shown on the right. Also check the life and static safety coefficient of the cross roller bearing and input side main bearing (input shaft type only). (See the specification of the input side main bearing and the output side main bearing on pages 114 to

■ Checking the load torque pattern

First, you need to look at the picture of the load torque pattern. Check the specifications shown in the figure below.

Graph 080-1

Obtain the value of each load torque pattern.

Load torque	T ₁ to T _n (N·m)
Time	t1 to tn (sec)
Output rotational speed	n1 to nn (r/min)

<Normal operation pattern>

Starting time	T1, t1, n1
Steady operation time	T2, t2, n2
Stopping (slowing) time	T3, t3, n3
Break time	T4, t4, n4

<Maximum rotational speed>

Max. output rotational speed $no max \ge n1 to nn$ ni $max \ge n1 \times R$ to $nn \times R$ Max. input rotational speed (Restricted by motors) R: Reduction ratio

<Impact torque>

When impact torque is applied

<Required life>

 $L_{10} = L$ (hours)

Flowchart of model number selection

Select a model number according to the following flowchart. If you find a value exceeding that from the ratings, you should review it with the upper-level model number or consider reduction of conditions including the load torque.

Calculate the average load torque applied on the output side of HarmonicDrive® from the load torque pattern: Tav (N·m).

$$Tav = \underbrace{\frac{_{10/3}}{_{n_1 \mid \cdot t_1 \cdot \mid T_1 \mid ^{10/3} + \mid n_2 \mid \cdot t_2 \cdot \mid T_2 \mid ^{10/3} + \cdots + \mid n_n \mid \cdot t_n \cdot \mid T_n \mid ^{10/3}}_{n_1 \cdot t_1 + n_2 \cdot t_2 + \cdots + n_n \cdot t_n}$$

Calculate the average output speed based on the load torque pattern: no av (r/min)

no
$$av = \frac{|n_1| \cdot t_1 + |n_2| \cdot t_2 + \cdots + |n_n| \cdot t_n}{t_1 + t_2 + \cdots + t_n}$$

Tentatively select a model No. under the following condition: Tav \leq Average load torque (See the rating table on page 082) Check the description in Caution below.

of the operation conditions, model No and reduction ratio.

Review

Determine the reduction ratio (R) based on the maximum output rotational speed (no max) and maximum input rotational speed (ni

ni max - ≧R no max

(A limit is placed on ni max by motors.)

Calculate the maximum input rotational speed (ni max) from the maximum output rotational speed (no max) and the reduction ratio (R).

ni *max*=no *max*⋅R

Calculate the average input rotational speed (ni av) from the average output rotational speed (no av) and the reduction ratio (R): ni av = no $av \cdot R \le Permissible$ average input rotational speed (nr).

Check whether the maximum input rotational speed is equal to or less than the values in the rating table.

ni *max* ≤ maximum input rotational speed (r/min)

Check whether T₁ and T₃ are equal to or less than the permissible eak torque (N·m) value at start and stop from the ratings

Check whether Ts is equal to or less than the permissible maximum momentary torque (N·m) value from the ratings

Calculate the lifetime and check whether it meets the

cification requirement.

Tr: Output torque nr: Permissible average input rotational speed

Tr nr L₁₀=20.000 (Hour) Tav ni av

The model number is determined.

Caution

Check impacts by speed reducer temperature rise, vibration during acceleration and deceleration and other factors if the operating conditions are as specified below. Study to "increase the speed reducer size", "review the operating conditions" and other means if it becomes necessary to study safety. Exercise reasonable caution especially when operating conditions are close to continuous operation.

Average load torque (Tav) > Permissible maximum value of average load torque (see page 082) Calculate average input rotational speed (ni av) > Permissible average input rotational sp

Check the description in Caution at the bottom of page 080

Unit Type

Example of model number Selection

Value of each load torque pattern.

Load torque Tn (N·m) Time tn (sec)

Output rotational speed nn (r/min)

<Normal operation pattern>

Starting time $T_1 = 70 \text{ N} \cdot \text{m}$, $t_1 = 0.3 \text{ sec}$, $t_2 = 60 \text{ r/min}$ Steady operation time $T_2 = 18 \text{ N} \cdot \text{m}$, $t_2 = 3 \text{ sec}$, $t_2 = 120 \text{ r/min}$ Stopping (slowing) time $T_3 = 35 \text{ N·m}$, $t_3 = 0.4 \text{ sec}$, $n_3 = 60 \text{ r/min}$

Break time

 $T_4 = 0 \text{ N} \cdot \text{m}$

 $t_4 = 5$ sec.

 $n_4 = 0 \text{ r/min}$

<Maximum rotational speed>

Max. output rotational speed Max. input rotational speed

no max = 120 r/minni *max* = 5,000 r/min (Restricted by motors)

<Impact torque>

Ts = 120 N·m When impact torque is applied

<Required life> $L_{10} = 30,000 \text{ (hours)}$

Calculate the average load torque applied to the output side based on the load torque pattern: Tav (N·m).

$$\mathsf{T}_{\textit{av}} = \underbrace{\frac{^{10/3}}{|60 \text{r/min}| \cdot 0.3 \text{sec} \cdot |70 \text{N} \cdot \text{m}|^{\frac{10/3}} + |120 \text{r/min}| \cdot 3 \text{sec} \cdot |18 \text{N} \cdot \text{m}|^{\frac{10/3}} + |60 \text{r/min}| \cdot 0.4 \text{sec} \cdot |35 \text{N} \cdot \text{m}|^{\frac{10/3}}}_{|60 \text{r/min}| \cdot 0.3 \text{sec} + |120 \text{r/min}| \cdot 3 \text{sec} + |60 \text{r/min}| \cdot 0.4 \text{sec}}$$

Calculate the average output rotational speed based on the load torque pattern: no av (r/min)

0.3sec+3sec+0.4sec+5sec

Select a model number temporarily with the following conditions. Tav = 30.2 N⋅m ≤ 48 N⋅m. (HPF-25A-11 is tentatively selected based on the average load torque (see the rating table on page 082) of model No. 25 and reduction ratio of 11.)

Determine a reduction ratio (R) from the maximum output rotational speed (no max) and maximum input rotational speed (ni max).

5,000 r/min - = 41.7 ≧ 21

120 r/min

Calculate the maximum input rotational speed (ni max) from the maximum output rotational speed (no max) and reduction ratio (R): ni max = 120 r/min · 11 = 1,320 r/min

Calculate the average input rotational speed (ni av) from the average output rotational speed (no av) and reduction ratio (R): ni av = 46.2 r/min·11= 508 r/min ≦ Permissible average input rotational speed of model No. 25 3,000 (r/min)

Check whether the maximum input rotational speed is equal to or less than the values specified in the rating table.

ni max = 1,320 r/min ≤ 5,600 r/min (maximum rotational input speed of model No. 25)

ОК

Check whether T_1 and T_3 are equal to or less than the peak torques (N·m) on start and stop in the rating table.

= 70 N·m ≤ 100 N·m (Peak torques on start and stop of model No. 25)

 T_3 = 35 N·m \leq 100 N·m (Peak torques on start and stop of model No. 25)




Review of the operation conditions, model No and reduction ratio.

Check whether Ts is equal to or less than the values of the momentary max. torque (N·m) in the rating table Ts = 120 N·m \leq 170 N·m (momentary max. torque of model No. 25)

Calculate life and check whether the calculated life meets the requirement.

As a result of the preceding steps, HPF-25A-11 is determined.

Rating Table =

The hollow shaft type of the HPF series is unique high-precision speed reducer unit of 1/11 low speed reduction. This features the hollow shaft that can be coaxial with the I/O shaft.

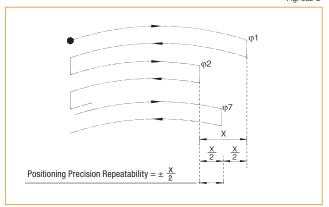
Table 082-1

				Permissi	ble max.	Permissi	ible peak	Permissi	ble max.	Permissible ave.	Permissible max.	Inertia moment	Mass
Model	Reduction	Rated outp	ut torque 1		of ave.		ue at	mome	11.3	input rotational	input rotational	Flange	Flange
	ratio			load to	orque -	start/s	stop °	torq	ue ³	speed *5	speed *6	output	output
		N⋅m	kgf·m	N⋅m	kgf⋅m	N⋅m	kgf⋅m	N⋅m	kgf⋅m	r/min	r/min	×10 ⁻⁴ kg·m ²	kg
25	11	21	2.1	48	4.9	100	10.2	170	17.3	3000	5600	1.63	3.8
32	11	44	4.5	100	10.2	220	22.4	450	45.9	3000	4800	3.84	7.2

- (Note) 1. Output torque set based on the life of L₁₀ = 20000 hours when input rotational speed is 3000 r/min, which is the rated rotational speed of ordinary servo motors.
 - 2. Permissible maximum value of average load torque calculated based on a load torque pattern (page 080). A life of 2000 hours or more is a criterion when operated at an input speed of 2000 r/min.
 - 3. Permissible maximum value of torque applied on start and stop in operation cycles.
 - 4. Permissible maximum value for impact torque in an emergency stop and for external impact torque. Operation exceeding these ranges may cause damages to reducers.
 - 5. The permissible average input rotational speed is set so as to limit the temperature rise due to the heat generated by the speed reducer. The value of the temperature rise depending on the heat radiation conditions of the speed reducer installation parts (housing) arranged by the customers and on the ambient temperature. It is appropriate to regard the surface temperature 70°C of the speed reducer as the reference upper limit. Especially for the model No. 32, pay careful attention to the values of temperature rise caused by the generated heat. Cool the unit or lower the average input rotational speed as necessary to set the operation pattern.
 - 6. Permissible maximum input rotational speed in operation modes other than continuous operation.

Performance Table ===

Table 082-2


Model	Reduction ratio	Angle transmiss	sion precision 1	Repeatability *2	Starting	torque *3	Overdrive sta	rting torque *4	No-load runi	ning torque *5
Wiodei	Neduction ratio	arc-min	×10⁻⁴rad	arc-sec	cN⋅m	kgf·cm	N·m	kgf⋅m	cN⋅m	kgf⋅cm
25	11	4	11.6	±15	59	6.0	6.5	0.66	78	8.0
32	11	4	11.6	±15	75	7.7	8.3	0.85	105	10.7

(Note) 1. Angle transmission precision indicates the difference between (1) logical rotating angle and (2) actual rotating angle of output when any rotating angle is given as an input. The values in the table are maximum values

- θ er : Angle transmission precision
- θ_1 : Input rotating angle
- θ_2 : Actual output rotating angle
- $\theta \operatorname{er} = \theta_2 -$
- : Reduction ratio of HPG series
- 3. Starting torque means the momentary "starting torque" with which the output side
- 2. The repeatability is determined by repeating positioning in a given position from the same direction seven times, by measuring stop positions of the output shaft and by calculating the maximum difference. Measured values are indicated in angles (degrees) and are prefixed with "±" to 1/2 of the maximum differences. The values in the table are maximum values.

Fia. 082-2

starts rotation when a torque is applied on the input side. The values in the table are maximum values.

Table 082-3

Load	No load
HPF speed reducer surface temperature	25°C

4. Overdrive starting torque means the momentary "starting torque" with which the input side starts rotation when a torque is applied on the output side. The values in the

Table 082-4

Load	No load
HPF speed reducer surface temperature	25°C

5. No-load running torque means the torque on the input side required to put the speed reducer under a no-load condition. The values in the table are average values

Input speed	3000 r/min
Load	No load
HPF speed reducer surface temperature	25°C

Torque - Torsion Characteristic =

■ Hollow Shaft Unit Type Standard Item

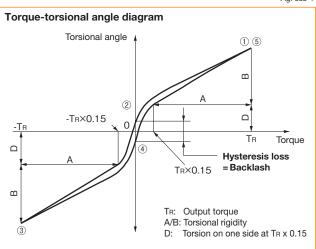
Table 083-1

İ			Backlash To		Torsional quantity on	one side at T _R X 0.15	Torsional rigidity		
-	Model	Reduction ratio			[A/B		
			arc-min	×10⁻⁴rad	arc-min	×10⁻⁴rad	kgf·m/arc-min	×100N·m/rad	
	25	11	3.0	8.7	2.0	5.8	1.7	570	
۱	32	11	3.0	8.7	1.7	4.9	3.5	1173	

■Torsional rigidity (windup curve)

Anchoring the speed reducer input and casing and applying a torque to the output part will generate torsion in the output part in accordance with the applied torque. Change the torque slowly in the order of: (1) Forward output torque, (2) Zero, (3) Reverse output torque, (4) Zero and (5) Forward output torque. A loop of (1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) (return to (1)) will be drawn in Fig. 083-1. The inclination in the region from "0.15 x output torque" to "Output torque" is small. The torsional rigidity of the HPF series is an average value of this inclination. The inclination in the region from "zero torque" to "0.15 x output torque" is large. This is caused by uneven distribution such as fine uneven contact of the engaging parts and load of the planet gears under a light load.

■ Calculation of total torsional quantity (Windup)


The method to calculate the total torsional quantity (average value) on one side when the speed reducer applies a load in a no-load state.

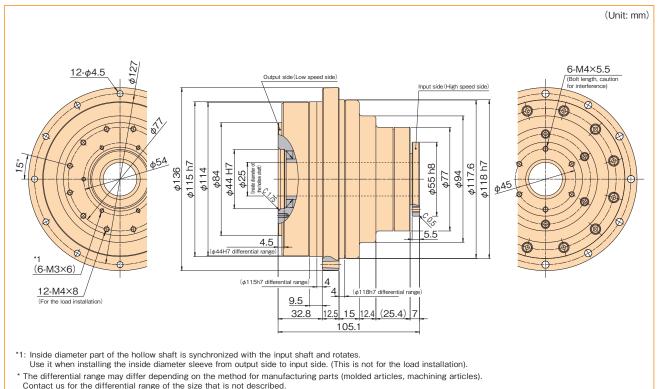
Formula 083-1 Calculation formula Symbols in calculation formula θ Total torsional quantity Torsional quantity on one side See Fig. 083-1, D Table 083-1 at output torque x 0.15 torque Т Output torque x 0.15 torque Τı See Fig. 083-1 (=T_R x 0.15) See Fig. 083-1, A / BTorsional rigidity Table 083-1

■ Backlash (Hysteresis Loss)

The zero-torque width (2) - (4) in Fig. 083-1 "Torque-torsional angle diagram" is called a hysteresis loss. The hysteresis loss between "Forward output torque" and "Reverse output torque" is defined as backlash of the HPF series. At the time of pre-shipment factory inspection, the backlash of the HPF series is less than 3 minutes.

Fig. 083-1

Dimensional Outline Drawing:


Only principal dimensions are shown in the dimension diagrams. For detailed dimensions and shapes, refer to the delivery specification drawings we provide.

For the specifications of the input side bearing of the hollow shaft unit type, refer to page 118.

You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

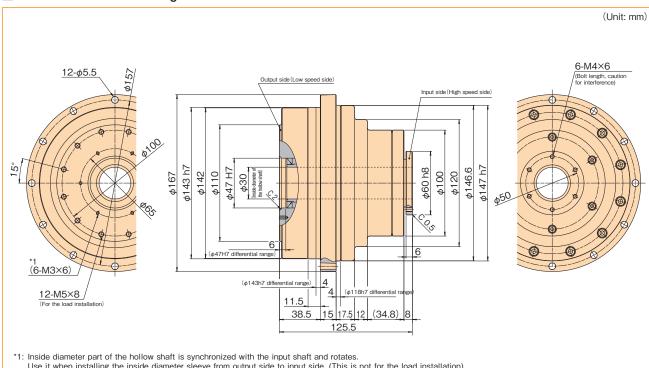

■ Dimensional outline drawing – Model No. 25

Fig. 084-1

■ Dimensional outline drawing – Model No. 32

Fig. 084-2

- Use it when installing the inside diameter sleeve from output side to input side. (This is not for the load installation).
- The differential range may differ depending on the method for manufacturing parts (molded articles, machining articles). Contact us for the differential range of the size that is not described.

Harmonic Planetary® HPG Input Shaft Unit Type

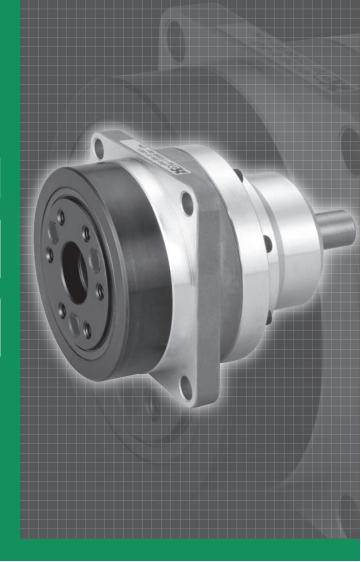
Size

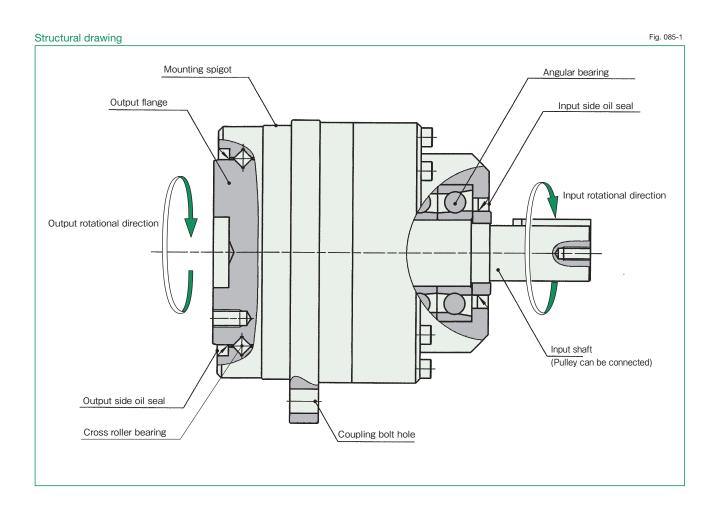
Model: 11, 14, 20, 32, 50, 65

Peak torque

3.9 N·m to 2200 N·m

Reduction ratio


1-stage reduction = 3 to 9 2-stage reduction = 11 to 50

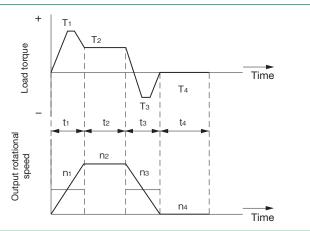

Small backlash

Standard: 3 min. or less Customized: 1 min. or less

High efficiency

90% or higher (85% for Models 11 and 14)

Model Number Selection


Check your operating conditions and select suitable model Nos. based on the flowchart to fully demonstrate the excellent performance of the Harmonic Planetary® HPG series.

In general, the servo system is rarely in a continuous constant load state. The load torque changes according to the input rotational speed variation and comparatively large torque are applied at start and stop. Unexpected impact torque may be applied. Check your operating conditions against the following load torque pattern and select suitable model Nos. based on the flowchart shown on the right. Also check the life and static safety coefficient of the cross roller bearing and input side main bearing (input shaft type only). (See the specification of the input side main bearing and the output side main bearing on pages 114 to

■ Checking the load torque pattern

First, you need to look at the picture of the load torque pattern. Check the specifications shown in the figure below.

Graph 086-1

Obtain the value of each load torque pattern.

Load torque T₁ to T_n (N·m) Time t1 to tn (sec) Output rotational speed n1 to nn (r/min)

<Normal operation pattern>

Starting time T1, t1, n1 T₂, t₂, n₂ Steady operation time Stopping (slowing) time T3, t3, n3 Break time T4, t4, n4

<Maximum rotational speed>

When impact torque is applied

Max. output rotational speed no $max \ge n1$ to nnMax. input rotational speed $ni max \ge n1 \times R to nn \times R$ (Restricted by motors) R: Reduction ratio //real

<Required life>

 $L_{10} = L$ (hours)

Flowchart of model number selection

Select a model number according to the following flowchart. If you find a value exceeding that from the ratings, you should review it with the upper-level model number or consider reduction of conditions including the load torque.

Calculate the average load torque applied on the output side from the load torque pattern: Tav (N·m).

$$Tav = \underbrace{\frac{_{10/3}}{}} \frac{ \underbrace{|h_1| \cdot t_1 \cdot |T_1|^{10/3} + |n_2| \cdot t_2 \cdot |T_2|^{10/3} + \cdots + |n_n| \cdot t_n \cdot |T_n|^{10/3}}_{n_1 \cdot t_1 + n_2 \cdot t_2 + \cdots + n_n \cdot t_n}$$

Calculate the average output speed based on the load torque pattern: no av (r/min)

no
$$av = \frac{|n_1| \cdot t_1 + |n_2| \cdot t_2 + \dots + |n_n| \cdot t_n}{t_1 + t_2 + \dots + t_n}$$

Select a model number temporarily with the following condition: Tav ≤ Average load torque (See the rating table on page 088)

Check the description in Caution below.

of the operation conditions, model No and reduction ratio.

Review

Determine the reduction ratio (R) based on the maximum output rotational speed (no max) and maximum input rotational speed (ni max)

(A limit is placed on ni max by motors.)

Calculate the maximum input rotational speed (ni max) from the maximum output rotational speed (no max) and the reduction ratio (R).

ni *max*=no *max*⋅R

Calculate the average input rotational speed (ni av) from the average output rotational speed (no av) and the reduction ratio (R): ni av = no av·R \leq Permissible average input rotational speed (nr).

Check whether the maximum input rotational speed is equal to or less than the values in the rating table. ni $max \leq maximum$ input rotational speed (r/min)

Check whether T_1 and T_3 are equal to or less than the permissible peak torque (N·m) value at start and stop from the ratings.

Check whether Ts is equal to or less than the permissible maximum momentary torque (N·m) value from the ratings.

Calculate the lifetime and check whether it meets the

specification requirement.

Tr: Output torque

nr: Permissible average input rotational speed

Tr nr L₁₀=20.000 (Hour) Tav ni av

OK

The model number is determined.

Caution

Check impacts by speed reducer temperature rise, vibration during acceleration and deceleration and other factors if the operating conditions are as specified below. Study to "increase the speed reducer size", "review the operating conditions" and other means if it becomes necessary to study safety. Exercise reasonable caution especially when operating conditions are close to continuous operation.

Average load torque (Tay) > Permissible maximum value of average load torque (see page 088)

Calculate average input rotational speed (ni av) > Permissible average input rotational speed (nr)

page 086

Check the description in Caution at the bottom of

■ Example of Model Number Selection

Value of each load torque pattern.

Load torque Tn (N·m) Time tn (sec) Output rotational speed nn (r/min) <Maximum rotational speed> Max. output rotational speed Max. input rotational speed

no max = 120 r/minni max = 5,000 r/min(Restricted by motors)

<Normal operation pattern>

Starting time $T_1 = 70 \text{ N} \cdot \text{m}$, $t_1 = 0.3 \text{ sec}$, $t_2 = 60 \text{ r/min}$ Steady operation time $T_2 = 18 \text{ N} \cdot \text{m},$ $t_2 = 3 \text{ sec}, \quad n_2 = 120 \text{ r/min}$

Stopping (slowing) time $T_3 = 35 \text{ N} \cdot \text{m}$, $t_3 = 0.4 \text{ sec}, \quad n_3 = 60 \text{ r/min}$ Break time $T_4 = 0 \text{ N} \cdot \text{m}$ $t_4 = 5$ sec. $n_4 = 0 \text{ r/min}$

<Impact torque>

When impact torque is applied T_s = 180 N·m

<Required lifespan> $L_{10} = 30,000 \text{ (hours)}$

Calculate the average load torque applied on the output side based on the load torque pattern: Tav (N·m).

$$\mathsf{T} \textit{av} = \underbrace{-\frac{^{10/3}}{|60 \text{r/min}| \cdot 0.3 \text{sec} \cdot |70 \text{N·m}|^{\frac{10/3}{3}} + |120 \text{r/min}| \cdot 3 \text{sec} \cdot |18 \text{N·m}|^{\frac{10/3}{3}} + |60 \text{r/min}| \cdot 0.4 \text{sec} \cdot |35 \text{N·m}|^{\frac{10/3}{3}}}_{|60 \text{r/min}| \cdot 0.3 \text{sec} + |120 \text{r/min}| \cdot 3 \text{sec} + |60 \text{r/min}| \cdot 0.4 \text{sec}}$$

Calculate the average output rotational speed based on the load torque pattern: no av (r/min)

Select a model number temporarily with the following conditions. $Tav = 30.2N \cdot m \le 60N \cdot m$. (HPG-20A-33 is tentatively selected based on the average load torque (see the rating table on page 088) of model No. 20 and reduction ratio of 33.)

Determine a reduction ratio (R) from the maximum output rotational speed (no max) and maximum input rotational speed (ni max).

5,000 r/min - = 41.7 ≧ 33

120 r/min

Calculate the maximum input rotational speed (ni max) from the maximum output rotational speed (no max) and reduction ratio (R): ni max = 120 r/min • 33 = 3,960 r/min

Calculate the average input rotational speed (ni av) from the average output rotational speed (no av) and reduction ratio (R): ni $av = 46.2 \text{ r/min} \cdot 33 = 1,525 \text{ r/min} \le \text{Permissible}$ average input rotational speed of model No. 20 3,000 (r/min)

Check whether the maximum input rotational speed is equal to or less than the values specified in the rating table. ni $max = 3,960 \text{ r/min} \le 6,000 \text{ r/min}$ (maximum input rotational speed of model No. 20)

Check whether T_1 and T_3 are equal to or less than the peak torques (N·m) on start and stop in the rating table $T_1 = 70 \text{ N·m} \leq 100 \text{ N·m}$ (Peak torques on start and stop of model No. 20)

 T_3 = 35 N·m \leq 100 N·m (Peak torques on start and stop of model No. 20)

Check whether Ts is equal to or less than the values of the momentary max. torque (N·m) in the rating table Ts = 180 N·m \leq 217 N·m (momentary max. torque of model No. 20)


ОК

Calculate life and check whether the calculated life meets the requirement.

$$L_{10} = 20,000 \cdot \\ \\ \left(\frac{29 \text{ N·m}}{30.2 \text{ N·m}} \right)^{10/3} \cdot \\ \left(\frac{3,000 \text{ r/min}}{1,525 \text{ r/min}} \right) = 34,543 \text{ (hours)} \ge 30,000 \text{ (hours)}$$

As a result of the preceding steps, HPG-20A-33 is determined.

Rating Table =

HPG series input shaft unit type has an extensive variety of 6 model numbers. For selecting the model number, refer to the rating table.

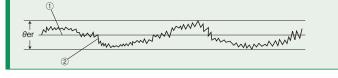
						ï									Table 088-1														
				Permissi	ble max.	Permissi	ble peak	Permi	issible	Permissible ave. input	Permissible max. input	Inertia r	noment	Ma	ass														
Model	Reduction ratio	Rated outp	out torque 1	value load to	of ave. orque ^{*2}		ue at stop ^{*3}		omentary Jue ^{*4}	rotational speed *5	rotational speed *6	Shaft output	Flange output	Shaft output	Flange output														
		N⋅m	kgf∙m	N·m	kgf⋅m	N·m	kgf⋅m	N⋅m	kgf⋅m	r/min	r/min	×10 ⁻⁴ kg·m²	×10 ⁻⁴ kg⋅m²	kg	kg														
	5	2.5	0.26	5.0	0.51	7.8	0.80					0.0087	0.0072																
	9	2.5	0.26	3.9	0.40	3.9	0.40	ĺ				0.0063	0.0058	0.24	0.20														
11	21	3.4	0.35					20	2.0	3000	10000	0.0064	0.0063																
	37	3.4	0.35	6.0	0.61	9.8	1.0					0.0052	0.0052	0.30	0.26														
	45	3.4	0.35			İ						0.0050	0.0050																
	3	2.9	0.30	6.4	0.65	15	1.5	37	3.8		5000	0.12	0.11																
	5	5.9	0.60	13	1.3					i		0.073	0.067	0.80	0.70														
	11	7.8	0.80			1						0.059	0.058																
14	15	9.0	0.90							3000		0.057	0.056																
	21	8.8	0.90	15	1.5	23	2.3	56	5.7		6000	0.049	0.049	0.90	0.80														
	33	10	1.0																										
	45	10	1.0									0.043	0.043																
	3	8.8	0.90	19	2.0	64	6.5	124	13		4000	0.80	0.69																
	5	16	1.6	35	3.6					1		0.44	0.40	2.4	2.0														
	11	20	2.0	45	4.6	ĺ						0.32	0.31																
20	15	24	2.4	53	5.4	l		İ	l	3000		0.30	0.30																
	21	25	2.5	55	5.6	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	10	217	22		6000	0.23	0.23	2.7	2.1
	33	29	3.0																0.19	0.19									
	45	29	3.0	60	6.1						İ		İ		0.18	0.18													
	3	31	3.2	71	7.2	225	23	507	52		3600	4.2	3.4	0.0	4.0														
	5	66	6.7	150	15					1		2.4	2.2	6.3	4.9														
	11	88	9.0				300 31	300 31	300 31	300 3													2.0	1.9					
32	15	92	9.4	170	17	17					31	31	31	CEO.	66	3000	6000	1.8	1.8										
	21	98	10			300	31	31	31	31				31	31	31	31	650	650 66		6000	1.5	1.5	6.9	5.3				
	33	108	11	200	20	1							4.0	1.0															
	45	108	11	200	20								1.3	1.3															
	3	97	9.9	195	20	657	67	1200	122		3000	21	18	17	14														
	5	170	17	340	35]						11	9.2	17	14														
	11	200	20	400	41							7.4	7.1		16														
50	15	230	24	450	46	850	87	1850	189	2000	4500	6.8	6.7																
	21	260	27				0,	1000	109		7,000	5.5	5.4	19															
	33	270	28	500	51							4.4	4.3																
	45	270	28									4.3	4.3																
	4	500	51	900	92						2500	58	44	43	33														
	5	530	54	1000	102							43	34	40	33														
	12	600	61	1100	112	2200	225					33	32		48														
65 ^{*7}	15	730	75	1300	133	2200	220	4500	460	2000		32	31	- 58															
03	20	800	81	1500	153			7300	400	2000	3000	22	21																
	25	850	87	1500	100							21	21																
	40	640	66	1300	133	1900	194					16	16																
	50	750	77	1500	153	2200	225					16	16																

(Note) 1. Output torque set based on the life of L10 = 20000 hours when input rotational speed is 3000 r/min, which is the rated rotational speed of ordinary servo motors. Models 50 and 65 are set at 2000 r/min as the rated rotational speed and at $L_{10} = 20000$ hours as the life for the servo motor to be combined.

- 2. Permissible maximum value of average load torque calculated based on a load torque pattern (page 086). A life of 2000 hours or more is a criterion when operated at an input speed of 2000 r/min.
- 3. Permissible maximum value of torque applied on start and stop in operation cycles.
- 4. Permissible maximum value for impact torque in an emergency stop and for external impact torque. Operation exceeding these ranges may cause damages to reducers.

 5. Permissible maximum value of average input rotational speed during operations. Make it a point to operate below this value especially when the operation mode is near
- continuous operation.
- 6. Permissible maximum input rotational speed in operation modes other than continuous operation.
- 7. Model 65 of Input Shaft Type is build-to-order.

Performance Table ===

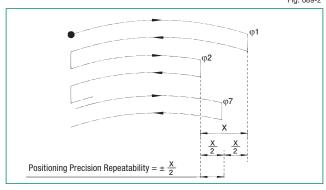

Table 089-1

Model	Reduction ratio	Angle transmis	sion precision 1	Repeatability *2	Starting torque ^{*3}		Overdrive starting torque ⁴		No-load running torqu	
Wiodei	neduction ratio	arc-min	×10⁻⁴rad	arc-sec	cN⋅m	kgf⋅cm	N·m	kgf⋅m	cN⋅m	kgf⋅cm
	5				7.9	0.81	0.40	0.040	8.9	0.91
	9			±30	7.6	0.77	0.68	0.069	6.3	0.65
11	21	5	14.5		6.8	0.69	1.4	0.14	5.2	0.53
	37				5.5	0.57	2.0	0.21	4.8	0.49
	45				5.3	0.55	2.4	0.25	4.7	0.48
	3				22	2.2	0.66	0.067	26	2.7
	5				17	1.7	0.83	0.085	15	1.5
	11				16	1.6	1.8	0.18	10	1.0
14	15	4	11.6	±20	15	1.0	2.3	0.23	8.2	0.84
	21				13	1.4	2.9	0.30	0.2	0.04
	33				11	1.2	3.8	0.39	7.3	0.74
	45				11	1.1	4.8	0.49		0.74
	3				46	4.7	1.4	0.14	61	6.2
	5				34	3.4	1.7	0.17	39	4.0
	11				30	3.1	3.3	0.34	26	2.6
20	15	4	11.6	±15	27	2.8	4.0	0.41	22	2.2
	21	l			24	2.5	5.1	0.52	20	2.0
	33				21	2.2	7.1	0.72	17	1.7
	45				20	2.0	8.9	0.91	16	1.6
	3				92	9.4	2.8	0.28	146	15
	5				69	7.1	3.5	0.35	100	10
	11				63	6.4	6.9	0.70	66	6.8
32	15	4	11.6	±15	61	6.2	9.1	0.93	57	5.9
	21				58	6.0	12	1.3	52	5.3
	33				52	5.3	17	1.7	42	4.3
	45				46	4.8	21	2.1	41	4.2
	3				197	20	5.9	0.60	300	31
	5				140	14	7.0	0.71	180	18
	11				110	11	12	1.2	110	11
50	15	3	8.7	±15	100	10	15	1.5	97	9.9
	21				98		21	2.1	90	9.2
	33				88	8.9	29	3.0	74	7.6
	45				83	8.4	37	3.8	70	7.1
	4				406	41	16	1.7	576	59
	5				358	36	18	1.8	517	53
	12				243	25	29	3.0	341	35
65	15	3	8.7	±15	228	23	34	3.5	311	32
	20				213	22	43	4.3	282	29
	25				202	21	51	5.2	262	27
	40				193	20	77	7.9	230	24
	50				188	19	94	9.6	219	22

(Note) 1. Angle transmission precision indicates the difference between (1) logical rotating angle and (2) actual rotating angle of output when any rotating angle is given as an input.

The values in the table are maximum values.

Fig. 089-1



- hetaer : Angle transmission precision
- θ_1 : Input rotating angle
- θ_2 : Actual output rotating angle
- : Reduction ratio of HPG series

$$\theta \text{ er} = \theta_2 - \frac{\theta_1}{P}$$

2. The repeatability is determined by repeating positioning in a given position from the same direction seven times, by measuring stop positions of the output shaft and by calculating the maximum difference. Measured values are indicated in angles (degrees) and are prefixed with "±" to 1/2 of the maximum differences. The values in the table are maximum values.

Fig. 089-2

Starting torque means the momentary "starting torque" with which the output side starts rotation when a torque is applied on the input side. The values in the table are maximum values.

Table 089-2

Load	No load
HPG speed reducer surface temperature	25°C

4. Overdrive starting torque means the momentary "starting torque" with which the input side starts rotation when a torque is applied on the output side. The values in the table are maximum values.

Table 089-3

Load	No load
HPG speed reducer surface temperature	25°C

No-load running torque means the torque on the input side required to put the speed reducer under a no-load condition. The values in the table are average values.

Table 089-4

Input speed	3000 r/min
Load	No load
HPG speed reducer surface temperature	25°C

Torque - Torsion Characteristic

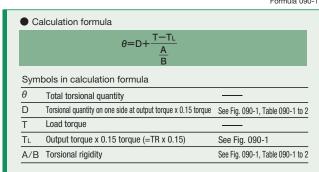
■Input Shaft Unit Type Standard Item

Table	090-1
-------	-------

Input Shaft Unit Type BL1 Specification (backlash of 1 min. or less) Table 09	Input Shaft Unit Type BL1	Specification	(backlash of 1	min.	or less)	Table 090-
--	---------------------------	---------------	----------------	------	----------	------------

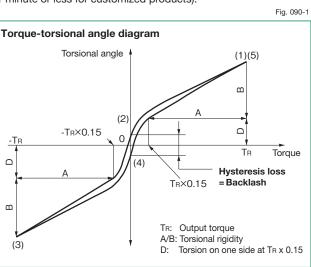
Model	Reduction ratio	Back	klash	one side a	quantity on t T _R X 0.15	Torsional rigidity		
	1440	arc-min ×10 ⁻⁴ rad a		arc-min	×10 ⁻⁴ rad	kgf·m/arc-min ×100N·m/r		
	5			2.5	7.3	0.060	20	
11	21 37 45	3.0	8.7	3.0	8.7	0.065	22	
	3 5			2.2	6.4	0.13	44	
14	11 15 21 33 45	3.0 8.7	2.7	7.9	0.14	47		
	3 5			1.5	4.4	0.50	170	
20	11 15 21 33 45	3.0	3.0 8.7	2.0	5.8	0.55	180	
	3 5			1.3	3.8	1.7 2.0	570 670	
32	11 15 21 33 45	3.0	8.7	1.7	4.9	2.2	740	
	3 5			1.3	3.8	8.4 11	2800 3700	
50	11 15 21 33 45	3.0	8.7	1.7	4.9	14	4700	
	4 5			1.3	3.8	30	10000	
65	12 15 20 25 40 50	3.0	8.7	1.7	4.9	37	12500	

Model	Reduction ratio	Back	klash		quantity on t T _R X 0.15	Torsional rigidity A/B		
		arc-min	×10 ⁻⁴ rad			kgf·m/arc-min	×100N·m/rad	
	3			1.1	3.2	0.13	44	
	5		2.9		0.2	0.10		
14	9	1.0						
	21 33			1.7	4.9	0.14	47	
	45							
	3			0.0	4.7	0.50	470	
	5			0.6	1.7	0.50	170	
	11							
20	15	1.0	2.9			0.55	400	
	21	3	1.1	3.2	0.55	180		
	33 45							
	3					1.7	570	
	5			0.5	1.5	2.0	670	
	11							
32	15	1.0	2.9	1.0	2.9		740	
	21					2.2		
	33 45							
	3					8.4	2800	
	5			0.5	1.5	11	3700	
	11							
50	15	1.0	2.9		2.9			
	21			1.0		14	4700	
	33							
	45 4							
	5			0.5	1.5	30	10000	
	12	İ						
65	15	1.0	2.9					
ชอ	20	1.0	2.9	1.0	2.9	37	12500	
	25			1.0	2.0	0,	12300	
	40							
	50							


■Torsional rigidity (Windup curve)

Anchoring the speed reducer input and casing and applying a torque to the output part will generate torsion in the output part in accordance with the applied torque. Change the torque slowly in the order of: (1) Forward output torque, (2) Zero, (3) Reverse output torque, (4) Zero and (5) Forward output torque. A loop of (1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) (return to (1)) will be drawn in Fig. 090-1. The inclination in the region from "0.15 x output torque" to "Output torque" is small. The torsional rigidity of the HPG series is an average value of this inclination. The inclination in the region from "zero torque" to "0.15 x output torque" is large. This is caused by uneven distribution such as fine uneven contact of the engaging parts and load of the planet gears under a light load.

■ Calculation of total torsional quantity (Windup)


The method to calculate the total torsional quantity (average value) on one side when the speed reducer applies a load in a no-load state.

Formula 090-1

■ Backlash (Hysteresis loss)

The zero-torque width (2) - (4) in Fig. 090-1 "Torque-torsional angle diagram" is called a hysteresis loss. The hysteresis loss between "Forward output torque" and "Reverse output torque" is defined as backlash of the HPG series. At the time of pre-shipment factory inspection, the backlash of the HPG series is less than 3 minutes (1 minute or less for customized products).

높

Dimensional Outline Drawing

Only principal dimensions are shown in the dimension diagrams. For detailed dimensions and shapes, refer to the delivery specification drawings we provide.

For the specifications of the input side bearing of the input shaft unit type, refer to page 118.

You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

■ Dimensional outline drawing – Model No. 11

Fig. 091-1

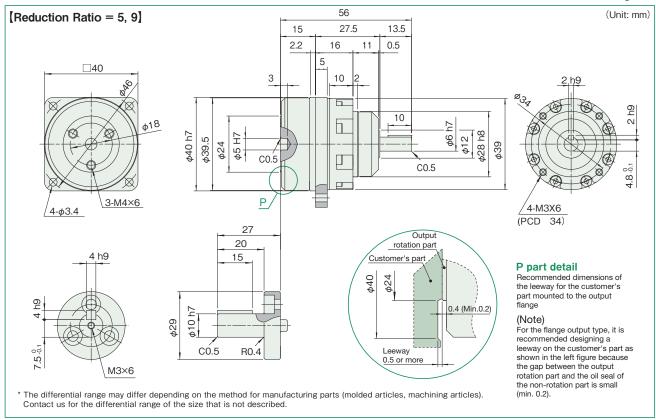
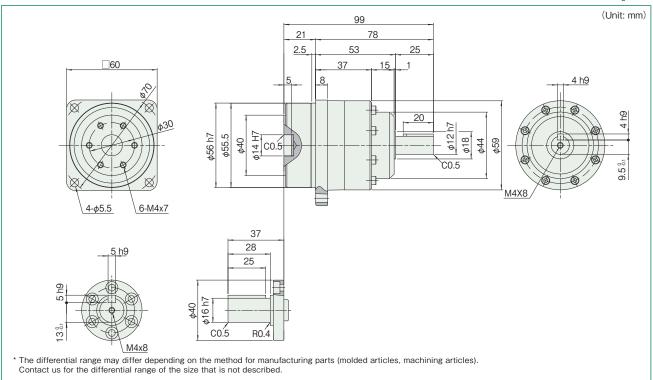


Fig. 091-2 65 (Unit: mm) [Reduction Ratio = 21, 37, 45] 15 36.5 13.5 0.5 2.2 25 11 <u>40</u> 3 10 10 φ6 h7 П φ40 h7 φ5 H7 φ28 h8 φ12 $\phi 39.5$ ϕ 24 φ39 C0.5 П C0.5 Р 3-M4×6 4-M3X6 4-φ3.4 (PCD 34) 27 Output 20 rotation part 4 h9 15 P part detail Recommended dimensions of the leeway for the customer's part mounted to the output 0.4 (Min.0.2) **Φ10 h**7 (Note) For the flange output type, it is recommended designing a leeway on the customer's part as shown in the left figure because CO'5R0.4 Leeway 0.5 or more the gap between the output rotation part and the oil seal of the non-rotation part is small The differential range may differ depending on the method for manufacturing parts (molded articles, machining articles). Contact us for the differential range of the size that is not described.

Dimensional Outline Drawing


Only principal dimensions are shown in the dimension diagrams. For detailed dimensions and shapes, refer to the delivery specification drawings we provide.

For the specifications of the input side bearing of the input shaft unit type, refer to page 118.

You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

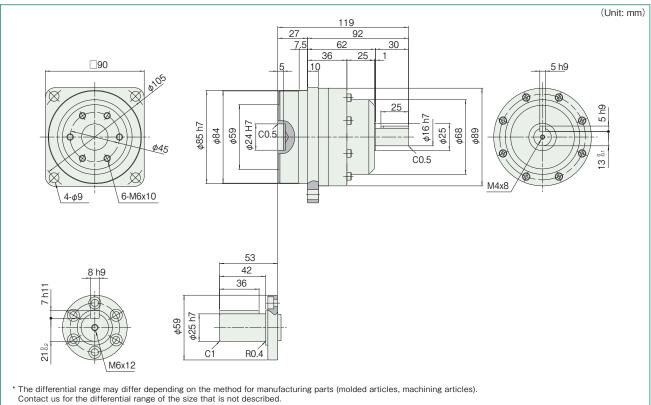
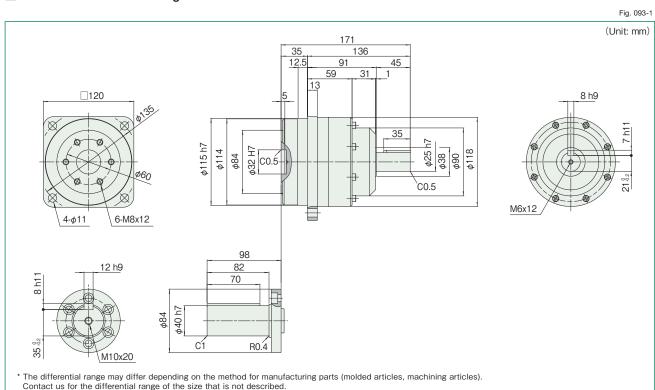

■ Dimensional outline drawing – Model No. 14

Fig. 092-1

■ Dimensional outline drawing – Model No. 20

Fig. 092-2


Dimensional Outline Drawing

Only principal dimensions are shown in the dimension diagrams. For detailed dimensions and shapes, refer to the delivery specification drawings we provide.

For the specifications of the input side bearing of the input shaft unit type, refer to page 118.

You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

■ Dimensional outline drawing – Model No. 32

■ Dimensional outline drawing – Model No. 50

Fig. 093-2 (Unit: mm) 219.5 53 166.5 □170 106.5 60 12 22.5° 22.5 71 1.5 10 h9 16 Ð 22.5°x6(=135°) 22.5°x6 (=135°) φ35 h7 φ165 h8 φ168.5 φ163 φ47 H7 φ122 φ120 C0.5 C0.5 Ø100 M8X12 14-M8x12 $4-\phi 14$ 103 14 h9 82 70 9 h11 φ50 h7 44.5 %2 C1 R0.4 M10x20 The differential range may differ depending on the method for manufacturing parts (molded articles, machining articles). Contact us for the differential range of the size that is not described.

Dimensional Outline Drawing

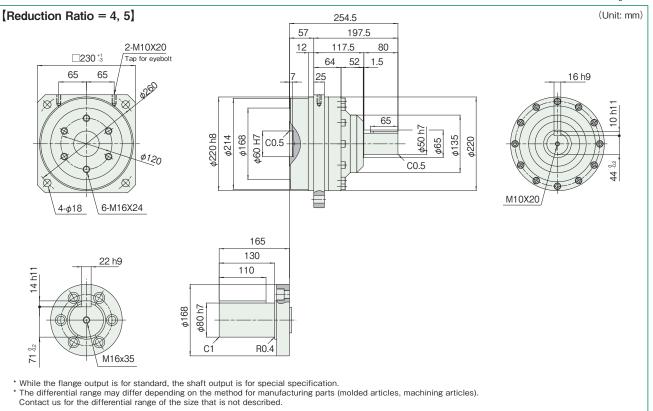
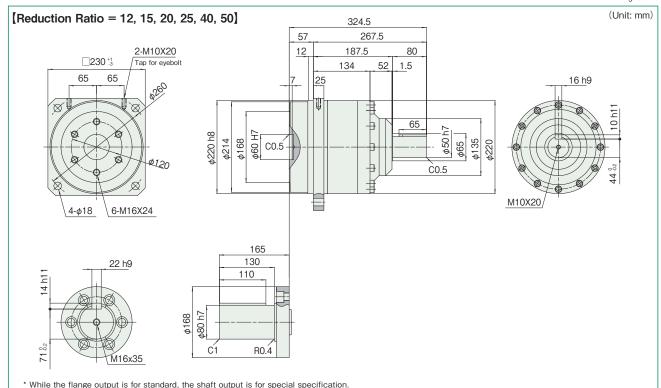
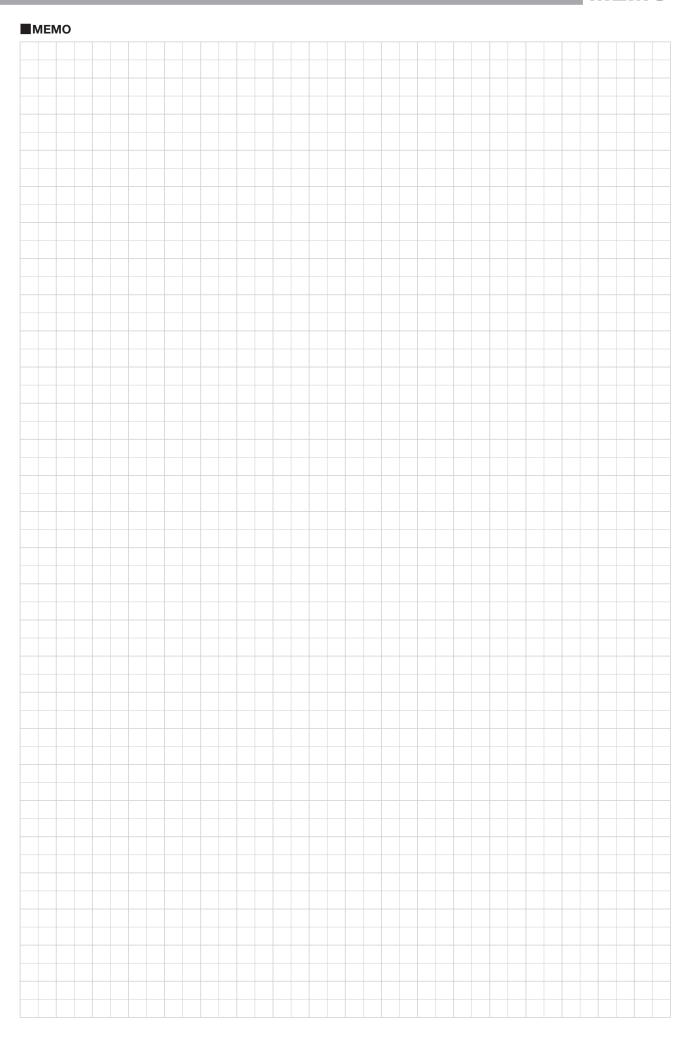
Only principal dimensions are shown in the dimension diagrams. For detailed dimensions and shapes, refer to the delivery specification drawings we provide.

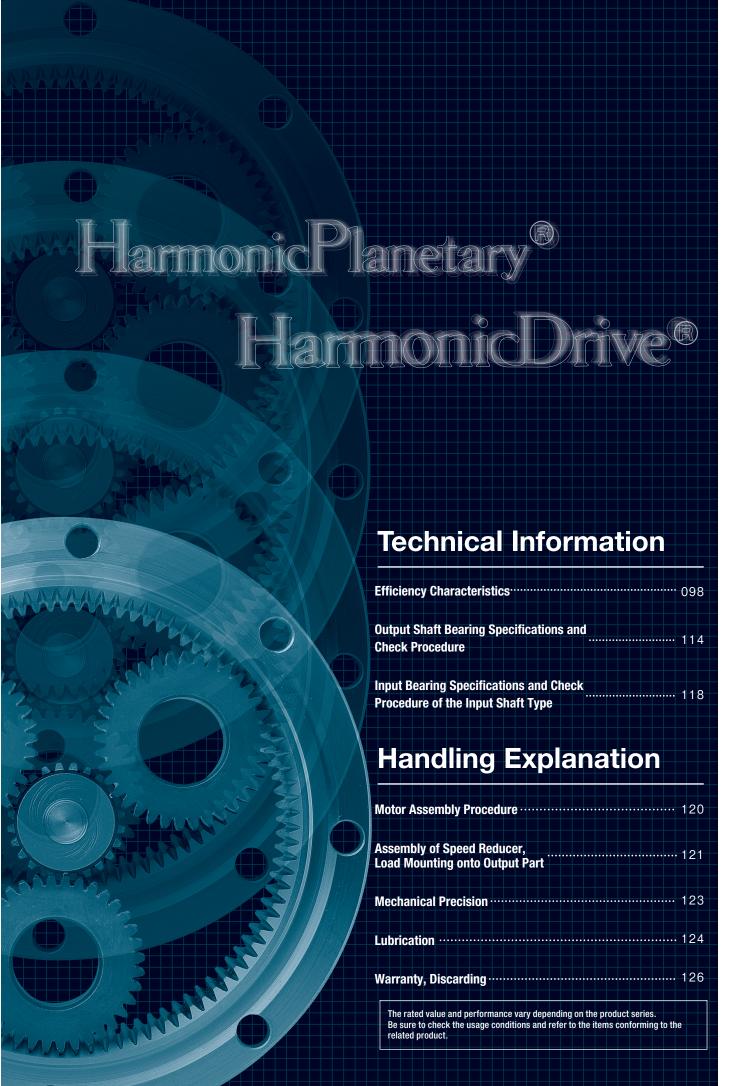
For the specifications of the input side bearing of the input shaft unit type, refer to page 118.

You can download the CAD data of this product from the following homepage. URL: https://www.hds.co.jp/

■ Dimensional outline drawing – Model No. 65

Fig. 094-1


Fig. 094-2

- The differential range may differ depending on the method for manufacturing parts (molded articles, machining articles). Contact us for the differential range of the size that is not described.

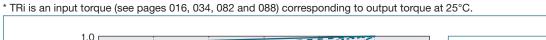
MEMO

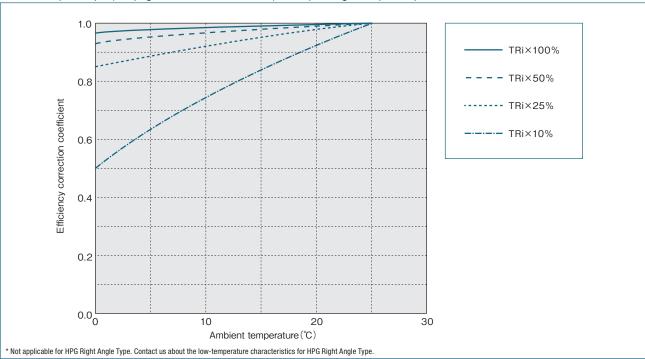
Efficiency Characteristics

In general, the efficiency of a speed reducer depends on the reduction ratio, input rotational speed, load torque, temperature and lubrication condition. The efficiency of each series under the following measurement conditions is plotted in the graphs on the next page. The values in the graph are average values.

■ Measurement condition

Table 098-1

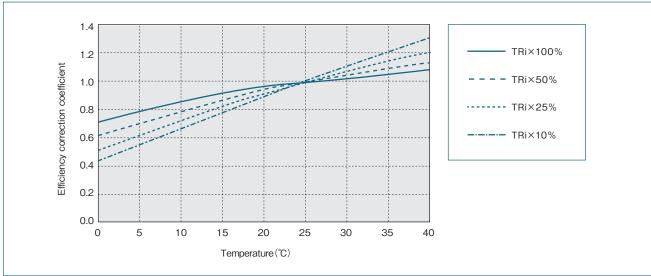

Input rotational speed	HPGP / HPG / HPF: 3000r/min CSG-GH / CSF-GH: Indicated on each efficiency graph.
Ambient temperature	25°C
Lubricant	Use standard lubricant for each model. (See pages 124 and 125 for details.)


■ Efficiency compensated for low temperature

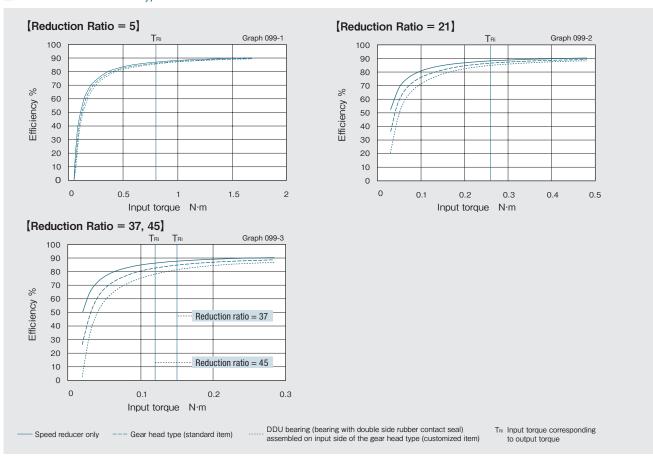
Calculate the efficiency at an ambient temperature of 25°C or less by multiplying the efficiency at 25°C by the low-temperature efficiency correction value. Obtain values corresponding to an ambient temperature and to an input torque (TRi*) from the following graphs when calculating the low-temperature efficiency correction value.

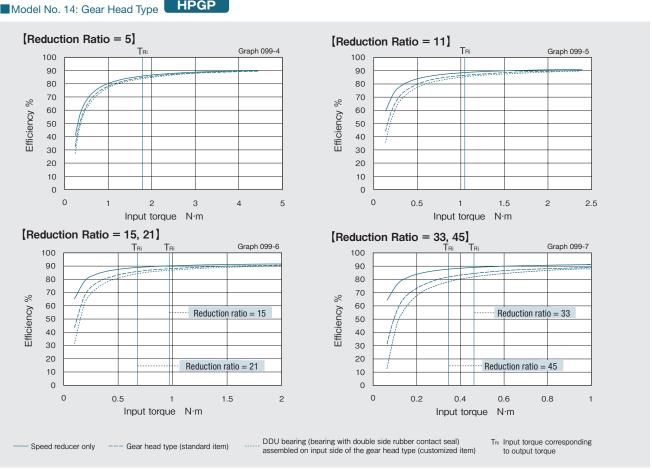
HPG

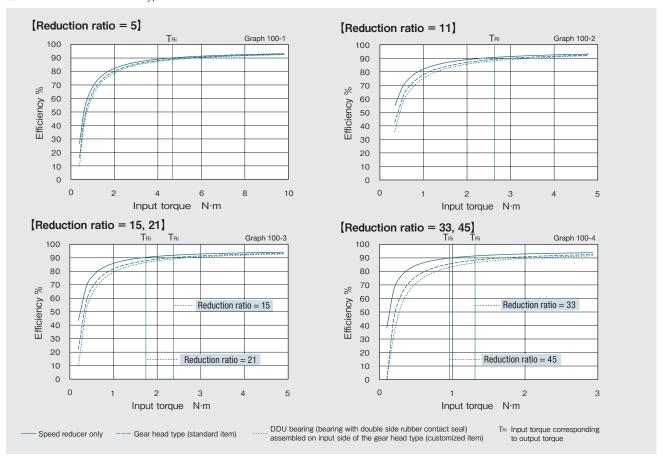
HPF

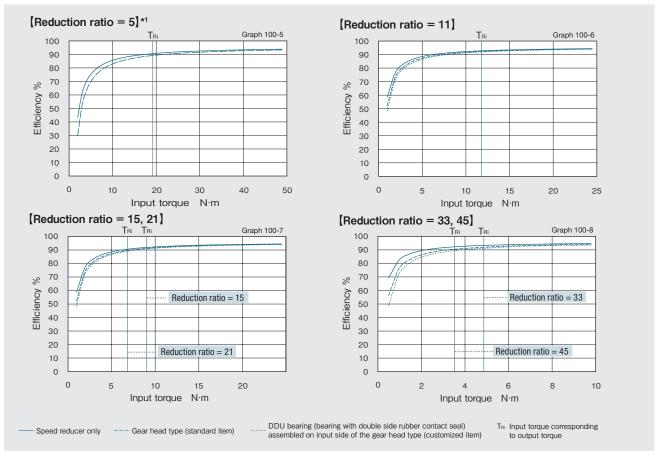


CSG-GH CSF-GH

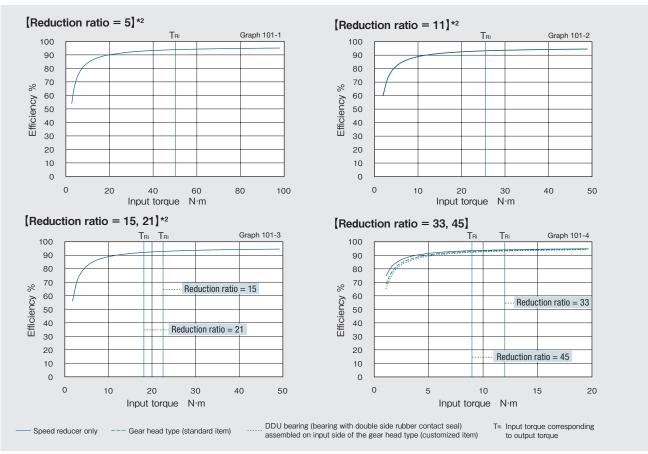

* TRi is an input torque (see pages 050 and 058) corresponding to output torque at 25°C.


Graph 098-1

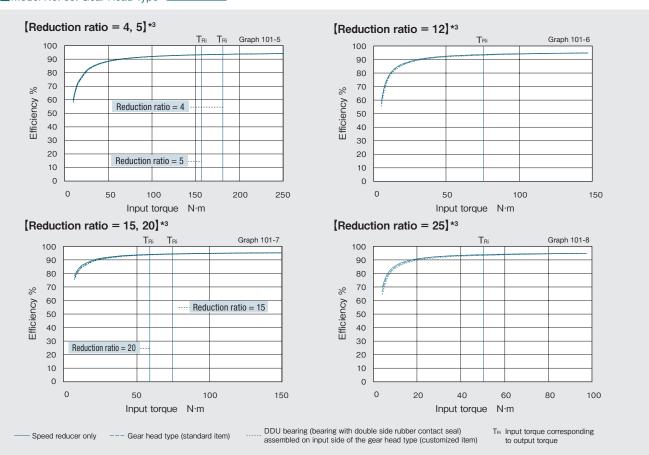

HPGP ■Model No. 11: Gear Head Type


■ Model No. 14: Gear Head Type

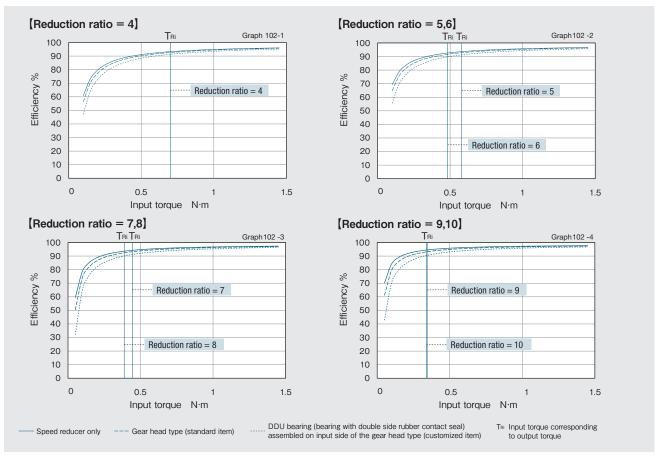
Model No. 20: Gear Head Type HPGP



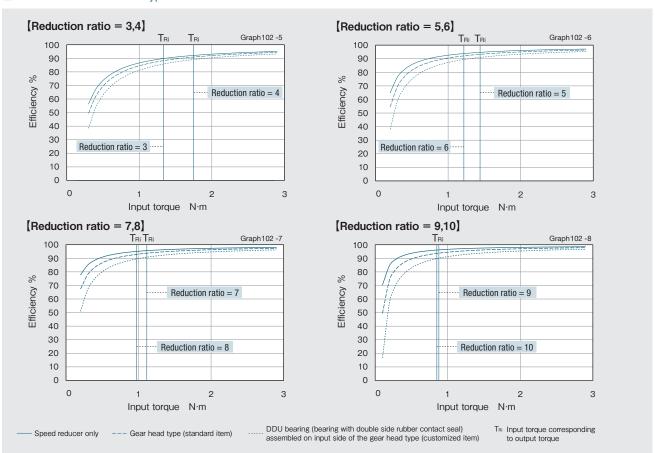
■ Model No. 32: Gear Head Type HPGP


^{*1} Only one line is shown in graphs because the difference between the speed reducer only and a bearing assembled on the input side is small.

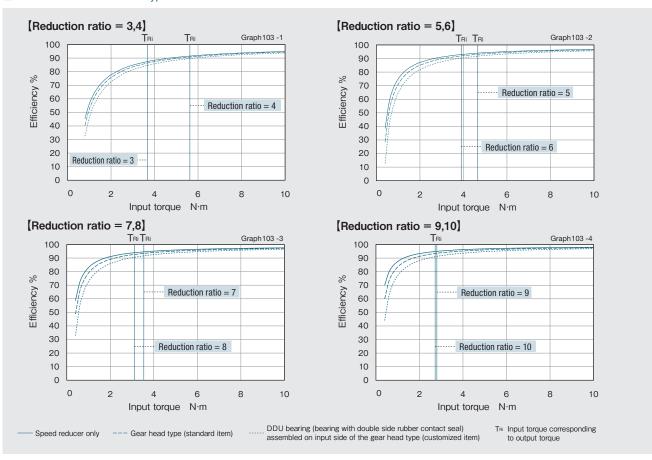
Model No. 50: Gear Head Type HPGP

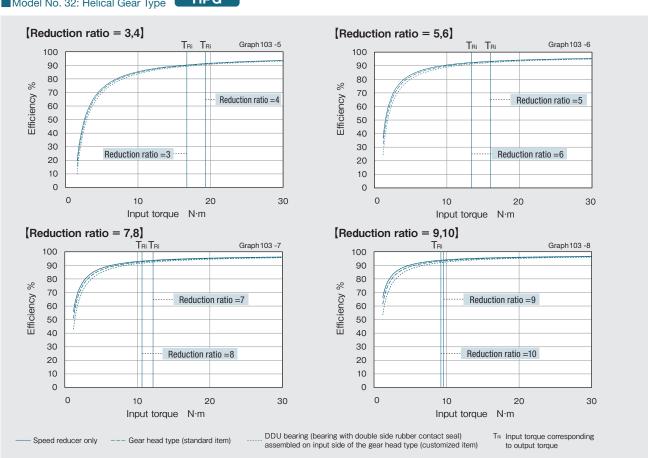

*2 Only one line is shown in graphs because the difference between the speed reducer only and a bearing assembled on the input side is small.

■ Model No. 65: Gear Head Type HPGP

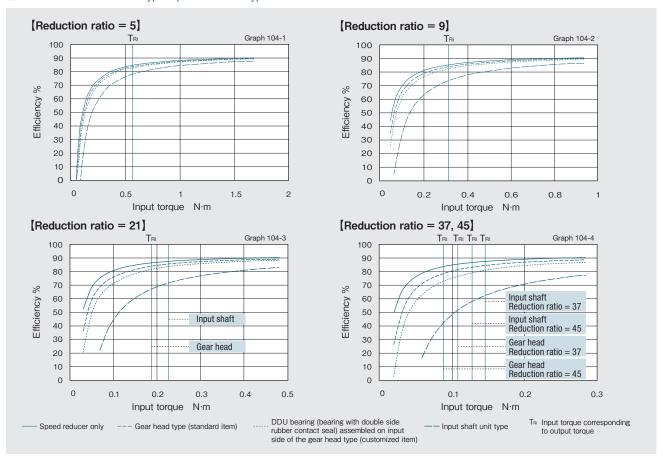


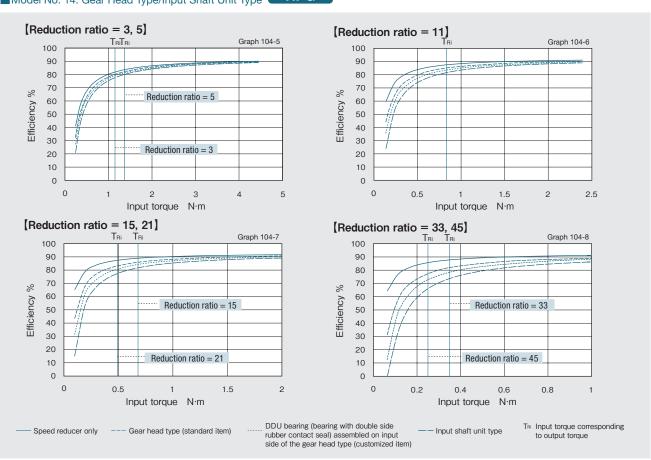
^{*3} Only one line is shown in graphs because the difference between the speed reducer only and a bearing assembled on the input side is small.


Model No. 11: Helical Gear Type HPG



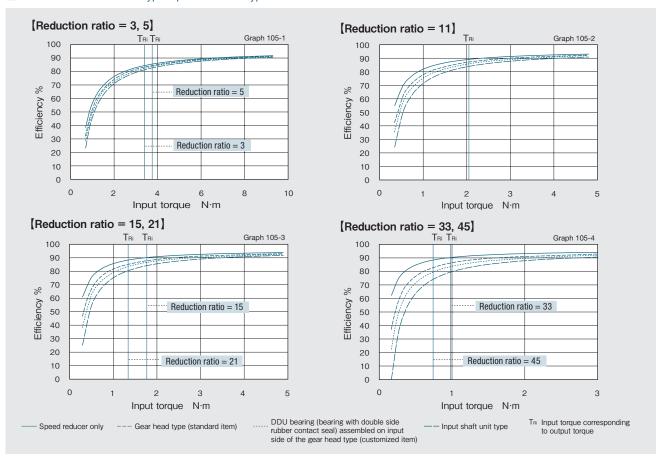
Model No. 20: Helical Gear Type HPG

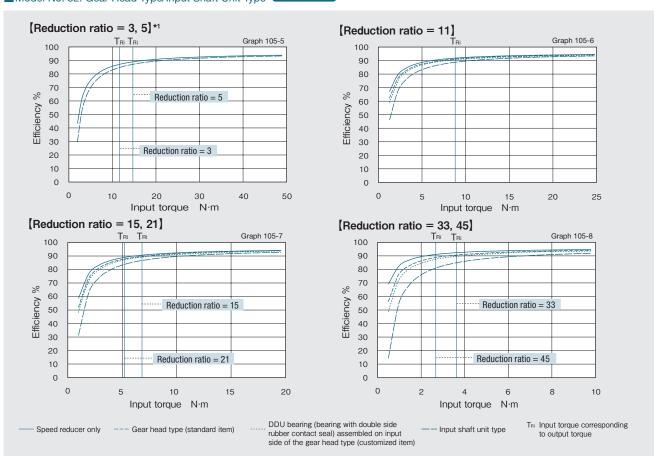




■ Model No. 11: Gear Head Type/Input Shaft Unit Type

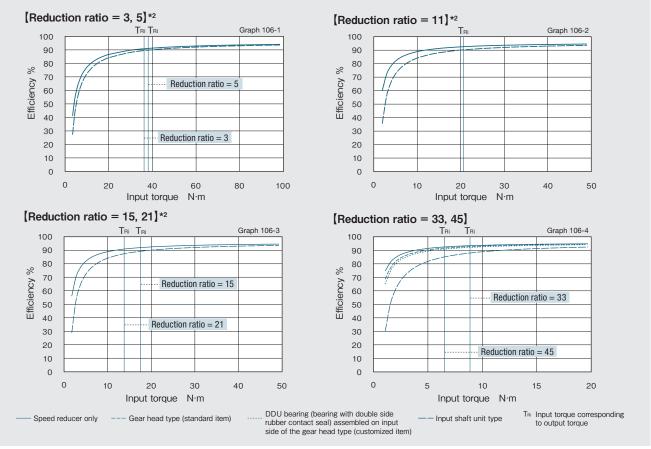
HPG

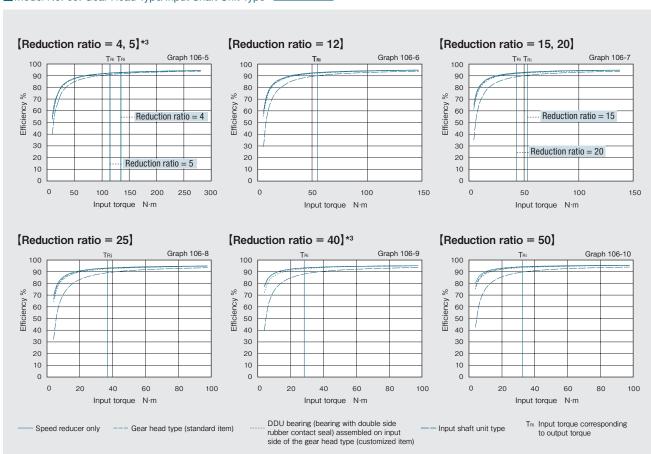




■ Model No. 20: Gear Head Type/Input Shaft Unit Type

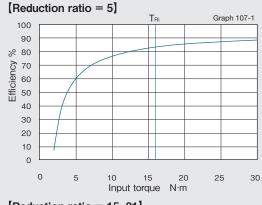
HPG

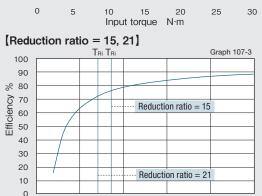



^{*1} Only one line is shown in graphs because the difference between the speed reducer only and a bearing assembled on the input side is small.

■ Model No. 50: Gear Head Type/Input Shaft Unit Type HPG

^{*2} Only one line is shown in graphs because the difference between the speed reducer only and a bearing assembled on the input side is small.


■Model No. 65: Gear Head Type/Input Shaft Unit Type HPG

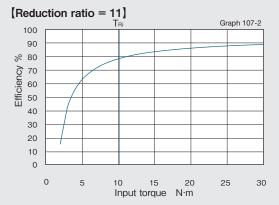


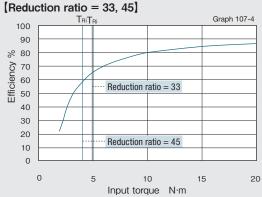
^{*3} Only one line is shown in graphs because the difference between the speed reducer only and a bearing assembled on the input side is small.

■ Model No. 32 RA3: Orthogonal Shaft Gear Head Type

10

Input torque N·m

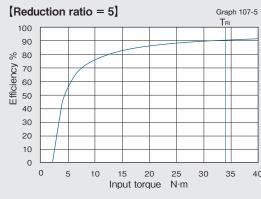

15

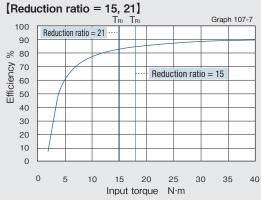

20

T_{Ri} Input torque corresponding to output torque

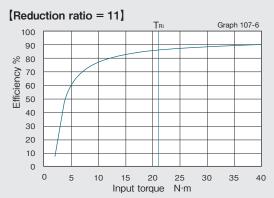
5

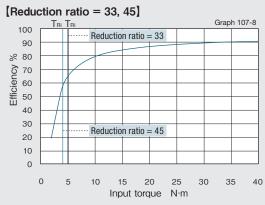
0

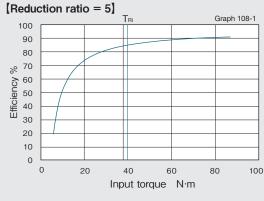


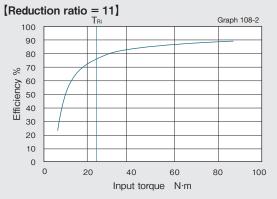


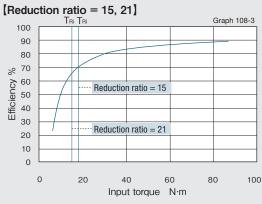
■ Model No. 50 RA3: Orthogonal Shaft Gear Head Type

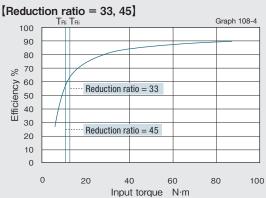

HPG


25

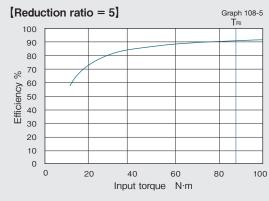

 $T_{\mbox{\scriptsize Ri}}$ Input torque corresponding to output torque

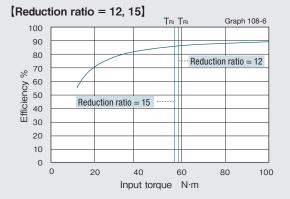


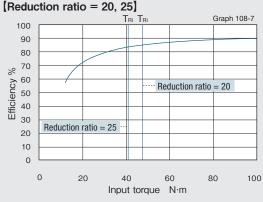



■ Model No. 50 RA5: Orthogonal Shaft Gear Head Type

HPG





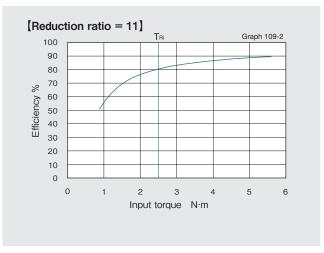

 $T_{\mbox{\tiny Ri}}$ Input torque corresponding to output torque

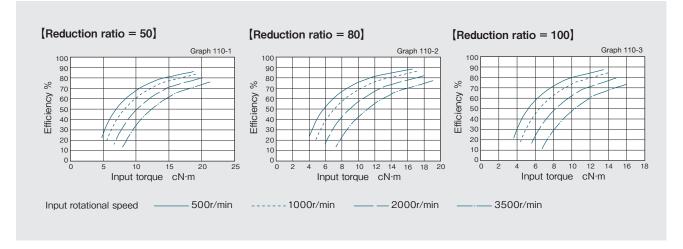
■ Model No. 65 RA5: Orthogonal Shaft Gear Head Type

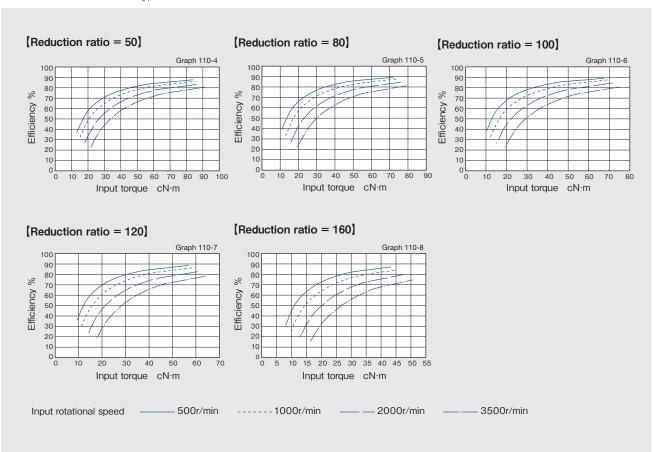
HPG

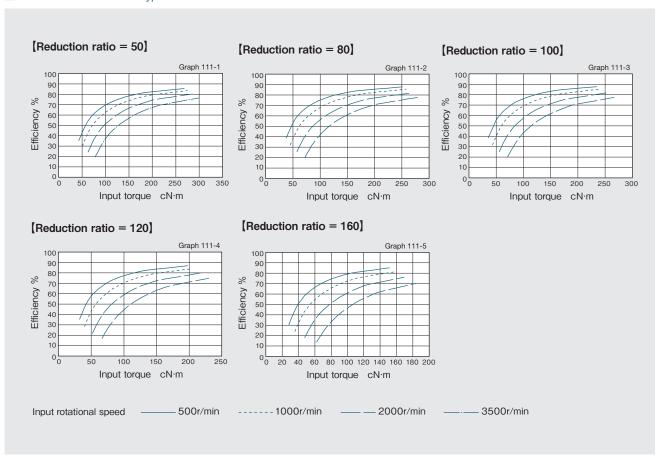


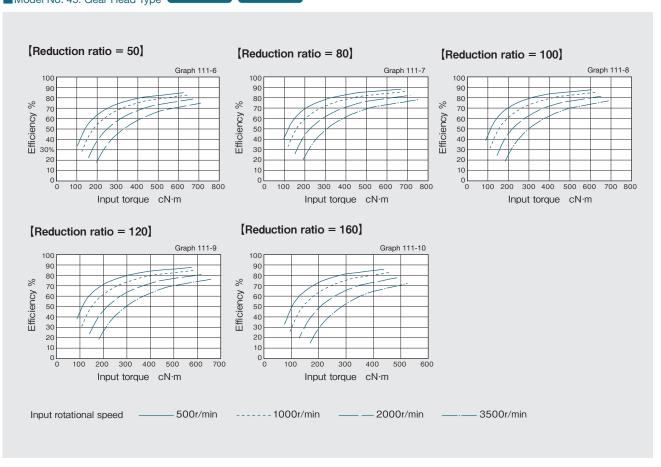
 $T_{\text{Ri}}\,$ Input torque corresponding to output torque


■ Model No. 25: Hollow Shaft Unit Type

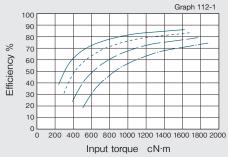


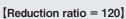


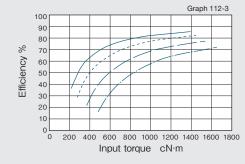

Model No. 14: Gear Head Type CSG-GH CSF-GH



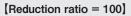
Model No. 32: Gear Head Type CSG-GH CSF-GH



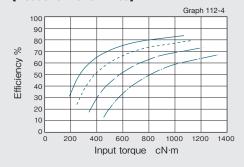




Model No. 65: Gear Head Type CSG-GH CSF-GH



- 500r/min


----- 1000r/min

Input rotational speed

[Reduction ratio = 160]

___ 2000r/min ____ 3500r/min

Technical Data

Output Shaft Bearing Specifications and Checking Procedure

A precision cross roller bearing is built in the HPG series to directly support the external load (output flange). Check the maximum load moment load, life of the bearing and static safety coefficient to fully bring out the performance.

■Checking procedure

(1) Checking the maximum load moment load (Mmax)

Obtain the maximum load moment load (Mmax).

■ Maximum load moment load (Mmax) ≤ Permissible moment (Mc)

(2) Checking the life

Obtain the average radial load (Frav) and the average axial load (Faav).

Obtain the radial load coefficient (X) and the axial load coefficient (Y).

• • Calculate the life and check it.

(3) Checking the static safety coefficient

Obtain the static equivalent radial load coefficient (Po).

• • Check the static safety coefficient. (fs)

Specification of output shaft bearing

HPGP/HPG Series Table 114-1, -2 and -3 indicate the specifications for gear head, orthogonal and input shaft type, and cross roller bearing.

Table 114-1

MadalNa	Pitch circle dia. of a roller	Offset amount		Basic ra	ted load		Permissible mo	ment load Mc ^{*3}	Moment rigidity Km ^{*⁴}	
Model No.	dp	R	Basic dynamic	rated load C ⁻¹	Basic static r	ated load Co ^{*2}	N·m	lead on	×10 ⁴	kgf·m/
	m	m	N	kgf	N	kgf	IN-III	kgf⋅m	N·m/rad	arc-min
11	0.0275	0.006	3116	318	4087	417	9.50	0.97	0.88	0.26
14	0.0405	0.011	5110	521	7060	720	32.3	3.30	3.0	0.90
20	0.064	0.0115	10600	1082	17300	1765	183	18.7	16.8	5.0
32	0.085	0.014	20500	2092	32800	3347	452	46.1	42.1	12.5
50	0.123	0.019	41600	4245	76000	7755	1076	110	100	29.7
65	0.170	0.023	90600	9245	148000	15102	3900	398	364	108

		Ctandora	I Ti (m a)
(HPGP)	כואחי	Standard	iivoei

Table	114-2	

(HPG Helical Gear Type)

Table	11	4-

HPGP/HPG Sta	ındard Type)	Table 114-2				
Model No.	Reduction ratio	Permissible radial load *5	Permissible axial load			
Model No.	neduction ratio	N	N			
	5	280	430			
	(9)	340	510			
11	21	440	660			
	37	520	780			
	45	550	830			
	(3)	400	600			
	5	470	700			
	11	600	890			
14	15	650	980			
	21	720	1080			
	33	830	1240			
	45	910	1360			
	(3)	840	1250			
	5	980	1460			
	11	1240	1850			
20	15	1360	2030			
	21	1510	2250			
	33	1729	2580			
	45	1890	2830			
	(3)	1630	2430			
	5	1900	2830			
	11	2410	3590			
32	15	2640	3940			
	21	2920	4360			
	33	3340	4990			
	45	3670	5480			
	(3)	3700	5570			
	5	4350	6490			
	11	5500	8220			
50	15	6050	9030			
	21	6690	9980			
	33	7660	11400			
	45	8400	12500			
	4	8860	13200			
	5	9470	14100			
	12	12300	18300			
05	15	13100	19600			
65	20	14300	21400			
	25	15300	22900			
	(40)	17600	26300			

Model No.	Reduction ratio	Permissible radial load ⁵			
Model 140.	ricadotionratio	N	N		
	4	260	400		
	5	280	430		
	6	300	450		
11	7	310	470		
	8	330	490		
	9	340	510		
	10	350	530		
	3	400	600		
	4	440	660		
	5	470	700		
14	6	490	740		
14	7	520	780		
	8	540	810		
	9	560	840		
	10	580	860		
	3	840	1250		
	4	910	1370		
	5	980	1460		
20	6	1030	1540		
20	7	1080	1620		
	8	1130	1680		
	9	1170	1740		
	10	1200	1800		
	3	1630	2430		
	4	1770	2650		
	5	1900	2830		
32	6	2000	2990		
32	7	2100	3130		
	8	2180	3260		
	9	2260	3380		
	10	2330	3480		

18900

^{*} The parenthesized reduction ratio value indicates the value for the HPG series.

CSG-GH/CSF-GH Series

Table 115-1 indicates the specifications for cross roller bearing.

Table 115-1

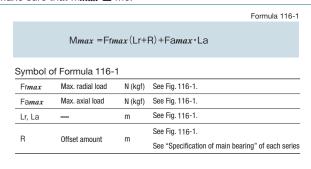
MadalNa	Pitch circle dia. of a roller	Offset amount		Basic ra	ated load		Permi moment	issible	Moment ri	gidity Km ^{*4}	Permissible radial load*5	Permissible axial load 5
Model No.	dp	R	Basic dynamic	rated load C ^{*1}	Basic static ra	ated load Co ^{*2}	moment	load ivic	×10 ⁴	kgf·m/	radiai idad	axiai ioau
	m	m	N	kgf	N	kgf	N·m	kgf⋅m	N·m/rad	arc-min	N	N
14	0.0405	0.011	5110	521	7060	720	27	2.76	3.0	0.89	732	1093
20	0.064	0.0115	10600	1082	17300	1765	145	14.8	17	5.0	1519	2267
32	0.085	0.014	20500	2092	32800	3347	258	26.3	42	12	2938	4385
45	0.123	0.019	41600	4245	76000	7755	797	81.3	100	30	5962	8899
65	0.170	0.0225	81600	8327	149000	15204	2156	220	323	96	11693	17454

HPF Series Table 115-2 indicates the specifications for cross roller bearing.

Table 115-2

	Pitch circle dia. of a roller	Offset amount		Basic ra	ted load		Permi moment		Moment ri	gidity Km ^{*4}	Permissible radial load 5	
Model No.	dp	R	Basic dynamic	rated load C ^{*1}	Basic static ra	ated load Co ⁻²	moment	load IVIC	×10 ⁴	kgf·m/	Taulai loau	axiai ioau
	m	m	N	kgf	N	kgf	N⋅m	kgf⋅m	N·m/rad	arc-min	N	N
25	0.085	0.0153	11400	1163	20300	2071	410	41.8	37.9	11.3	1330	1990
32	0.1115	0.015	22500	2296	39900	4071	932	95	86.1	25.7	2640	3940

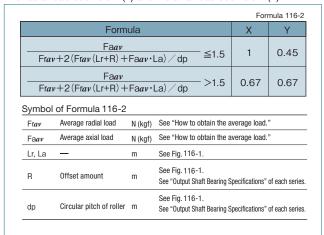
(Note: Table 114-1, -2 and -3 Table 115-1 and -2)

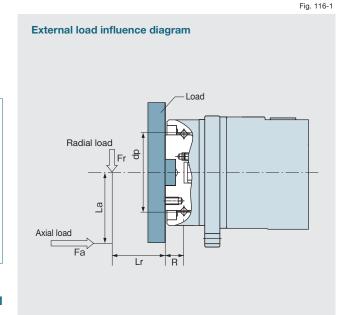

(Note) 1. The basic dynamic rated load means a certain static radial load so that the basic dynamic rated life of the roller bearing is a million rotations.

- 2. The basic static rated load means a static load that gives a certain level of contact stress (4kN/mm²) in the center of the contact area between rolling element receiving the maximum load and orbit.
- 3. The permissible moment load is a maximum moment load applied to the bearing. Within the permissible range, basic performance is maintained and the bearing is operable. Check the bearing life based on the calculations shown on the next page.
- 4. The values of the moment rigidity is the average value.
- 5. The permissible radial load and permissible axial load are the values that satisfy the life of a speed reducer when a pure radial load or an axial load applies to the main bearing. (Lr + R = 0 mm for radial load and La = 0 mm for axial load) If a compound load applies, check in accordance with the calculations shown on the next page.

How to obtain the maximum load moment load

HPGP HPG CSG-GH CSF-GH HPF

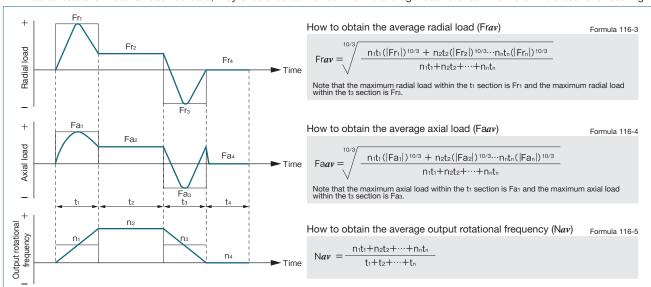

Maximum load moment load (M_{max}) is obtained as follows. Make sure that $M_{max} \le Mc$.



How to obtain the radial load coefficient and the axial load coefficient

HPGP HPG CSG-GH CSF-GH HPF

The radial load coefficient (X) and the axial load coefficient (Y)



■ How to obtain the average load (Average radial load, average axial load, average output rotational frequency)

HPGP HPG CSG-GH CSF-GH HPF

If the radial load and the axial load fluctuate, they should be converted into the average load to check the life of the cross roller bearing.

■ How to obtain the life

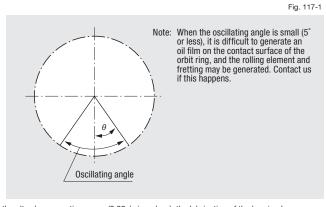
HPGP

HPG CSG-GH CSF-GH

Obtain the life of the cross roller bearing by Formula 117-1. You can obtain the dynamic equivalent radial load (Pc) by Formula 117-2.

	$L_{10} = \frac{10^6}{60 \times N_0}$	$\frac{1}{av} \times \left(-\frac{1}{av} \right)$	Formula 117-1 C fw·Pc
	ol of Formula 117-1		
L ₁₀	Life	hour	<u>–</u>
Nav	Ave. output speed	r/min	See "How to obtain the ave. load.
Nav C	Ave. output speed Basic dynamic rated load	r/min N (kgf)	
	· · ·		See "How to obtain the ave. load. See "Output Shaft Bearing Specs. See Formula 117-2.

Load coefficient	Table 117-1
Load status	fw
During smooth operation without impact or vibration	1 to 1.2
During normal operation	1.2 to 1.5
During operation with impact or vibration	1.5 to 3


		Formula 117-2	
$= X \cdot \left(Frav + \frac{2(Frav)}{r} \right)$	(Lr+R dp	$\left(\frac{1}{2}\right) + \operatorname{Fa} av \cdot \operatorname{La} \left(\frac{1}{2}\right) + \operatorname{Y} \cdot \operatorname{Fa} av $	
of Formula 117-2			
Average radial load	N (kgf)	See "How to obtain the ave. load."	
Average axial load	N (kgf)	See now to obtain the ave. load.	
Circular pitch of roller	m	See "Output Shaft Bearing Specs."	
Radial load coefficient	_	See "How to obtain the radial load	
Axial load coefficient	_	coefficient and the axial load coefficient.	
_	m	See Fig. 116-1. See "External load influence diagram."	
Offset amount	m	See Fig. 116-1. See "External load influence diagram" and "Output Shaft Bearing Specs" of each series.	
	of Formula 117-2 Average radial load Average axial load Circular pitch of roller Radial load coefficient Axial load coefficient	Average radial load N (kgf) Average axial load N (kgf) Circular pitch of roller Radial load coefficient - Axial load coefficient m	

How to obtain the life under oscillating movement

HPG CSG-GH CSF-GH

Obtain the life of the cross roller bearing under oscillating movement by Formula 117-3.

Formula 117-3 C 60×n1 Symbol of Formula 117-3 Loc Rated life under oscillating movement hour No. of reciprocating oscillation per min. cpm Basic dynamic rated load N (kgf) See "Output Shaft Bearing Specs." Pc Dynamic equivalent radial load N (kgf) See Formula 117-2. See Table 117-1. Load coefficient Oscillating angle /2 Deg. See Fig. 117-1.

Note

When it is used for a long time while the rotation speed of the output shaft is in the ultra-low operation range (0.02r/min or less), the lubrication of the bearing becomes insufficient, resulting in deterioration of the bearing or increased load in the driving side. When using it in the ultra-low operation range, contact us.

■How to obtain the static safety coefficient

HPGP

HPG

CSG-GH

CSF-GH

HPF

In general, the basic static rated load (Co) is considered to be the permissible limit of the static equivalent load. However, obtain the limit based on the operating and required conditions. Obtain the static safety coefficient (fs) of the cross roller bearing by Formula 117-4. General values under the operating condition are shown in Table 117-2. You can obtain the static equivalent radial load (Po) by Formula 117-5.

			Formula 117-4
	fs	$s = \frac{Co}{Po}$	
Symbo	ol of Formula 117-4		
Со	Basic static rated load	N (kgf)	See "Output Shaft Bearing Specs."
Po	Static equivalent radial load	N (kgf)	See Formula 117-5.

Table 117-2
fs
≧3
≧2

≥1.5

Under normal operating condition

Formula 117-5							
$Po=Fr_{max} + \frac{2Mmax}{dp} + 0.44Fa_{max}$							
Symbol of Formula 117-5							
Fr <i>max</i>	Max. radial load	N (kgf)					
Fa <i>max</i>	Max. axial load	N (kgf)	See "How to obtain the max. load moment load."				
Mmax	Max. load moment load	N·m (kgf·m)					
	Circular pitch of roller	m	See "Output Shaft Bearing Specs" of each series.				

Input Shaft Bearing Specifications and Checking Procedure

Check the maximum load and life of the bearing on the input side if the reducer is of the HPG input shaft type or the HPF hollow shaft type.

■ Checking procedure

HPG

HPF

(1) Checking maximum load

Calculate:

Maximum load moment load (Mi max)
Maximum load axial load (Fai max)
Maximum load radial load (Fri max)

Maximum load moment load (Mi max) \leq Permissible moment load (Mc) Maximum load axial load (Fai max) \leq Permissible axial load (Fac) Maximum load radial load (Fri max) \leq Permissible radial load (Frc)

(2) Checking the life

Calculate:

Average moment load (Mi av) Average axial load (Fai av) Average input speed (Ni av)

Calculate the life and check it.

■Specification of input shaft bearing

The specification of the input side main bearing of the input shaft type is shown below.

Specification of input shaft bearing

HPG

Table 118-1

	Basic rated load							
Model	Basic dynamic	rated load Cr	Basic static rated load Cor					
	N	kgf	N	kgf				
11	2700	275	1270	129				
14	5800	590	3150	320				
20	9700	990	5600	570				
32	22500	2300	14800	1510				
50	35500	3600	25100	2560				
65	51000	5200	39500	4050				

Table 118-2

Model	Permissible me	oment load Mc	Permissible a	xial load Fac ⁻¹	Permissible radial load Frc ⁻²		
Model	N·m	kgf∙m	N	kgf	N	kgf	
11	0.16	0.016	245	25	20.6	2.1	
14	6.3	0.64	657	67	500	51	
20	13.5	1.38	1206	123	902	92	
32	44.4	4.53	3285	335	1970	201	
50	96.9	9.88	5540	565	3226	329	
65	210	21.4	8600	878	5267	537	

Specification of input shaft bearing

HPF

Table 118-3

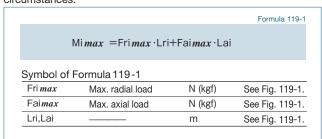
Model	Basic rated load						
	Basic dynamic	rated load Cr	Basic static rated load Cor				
	N	kgf	N	kgf			
25	14500	1480	10100	1030			
32	29700	3030	20100	2050			

Table 118-4

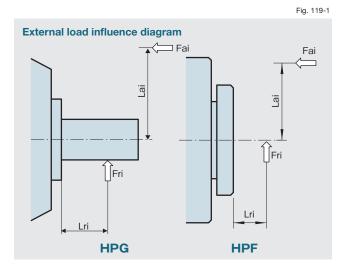
Model	Permissible mo	oment load Mc	Permissible a	xial load Fac ⁻¹	Permissible radial load Frc ^{*3}		
iviodei	N⋅m	kgf⋅m	N	kgf	N	kgf	
25	10	1.02	1538	157	522	53.2	
32	19	1.93	3263	333	966	98.5	

(Note: Table 118-2 and 118-4)

(Note) 1. The permissible axial load is the tolerance of an axial load applied to the shaft center.

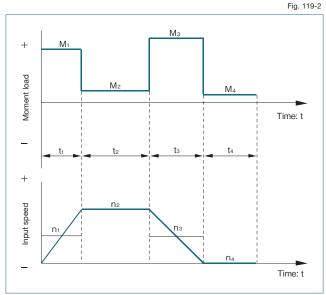

- 2. The permissible radial load of HPG series is the tolerance of a radial load applied to the shaft length center.
- 3. The permissible radial load of HPG series is the tolerance of a radial load applied to the point of 20 mm from the shaft edge (input flange edge face).

■Calculating maximum load moment load to input shaft


HPG

HPF

The maximum load moment load (Mi max) is obtained as follows. Check that the following formulas are established in all circumstances:


 $Mimax \le Mc$ (Permissible moment load) $Faimax \le Fac$ (Permissible axial load)

How to obtain the average load (Average moment load, average axial load, average input rotational frequency)

If the moment load and the axial load fluctuate, they should be converted into the average load to check the life of the bearing.

Formula 119-5

How to obtain the average moment load (Mi
$$_{av}$$
)

Formula 119-2

$$Mi_{av} = \sqrt[3]{\frac{n_1t_1(\left|Mi_1\right|)^3 + n_2t_2(\left|Mi_2\right|)^3 \cdots n_nt_n(\left|Mi_n\right|)^3}{n_1t_1 + n_2t_2 + \cdots + n_nt_n}}$$

How to obtain the average output rotational frequency (Niav)

Formula 119-4

$$Ni av = \frac{n_1 t_1 + n_2 t_2 + \dots + n_n t_n}{t_1 + t_2 + \dots + t_n}$$

■Calculating life of input side bearing

Calculate the bearing life according to Calculation Formula 119-5 and check the life.

Symbol of Formula 119-5 Life L10 Hour Niav Average input rotational speed r/min See Formula 119-4 Cr Basic dynamic rated load N (kgf) See Table 119-1 and -3 See Table 119-1 and -2 Pci Dynamic equivalent radial load N

Dynamic equivalent	radial load HPG	Table 119-1
Model No.	Pci	
11	0.444 × Mi av + 1.4	126 × Fai <i>av</i>
14	0.137 × Mi av + 1.2	232 × Fai <i>av</i>
20	0.109 × Mi av + 1.2	232 × Fai <i>av</i>
32	0.071 × Mi av + 1.2	232 × Fai <i>av</i>
50	0.053 × Mi av + 1.2	232 × Fai <i>av</i>
65	0.041 × Mi av + 1.5	232 × Fai <i>av</i>

Dynamic equivalent	radial load	HPF	Table 119-2
Model No.		Pci	
25	121	1 × Mi <i>av</i> + 2	.7 × Fai <i>av</i>
32	106	6 × Mi <i>av</i> + 2	.7 × Fai <i>av</i>

Miav Average moment load N·m (kgf·m) Faiav Average axial load N (kgf)

See Formula 119-2 See Formula 119-3

Handling Explanation ■

Assemble and mount your gear head series products correctly to ensure full demonstration of their excellent performance. Select bolts and observe tightening torques recommended by us.

■ Motor assembly procedure

HPGP

HPG

CSG-GH CSF-GH

For installing gear heads and motors, follow the procedure below.

Turn the input shaft coupling and align the bolt head with the rubber cap hole.

(2)

For HPGP/HPG series, coat a sealant on the surface that will mount the motor. (Recommended sealant: LOCKTITE 515)

(3) Slowly insert the motor into the speed reducer. Erect the speed reducer upright as illustrated in the figure below. Slide the speed reducer into the input shaft coupling by guiding the motor shaft into it without falling it down. If the speed reducer cannot be erected upright, tighten the bolts evenly little by little. Exercise due care and avoid tilting the motor when inserting it.

Fasten the motor and speed reducer flange with bolts. (4)

Bolt* tightening torque

Table 120-1

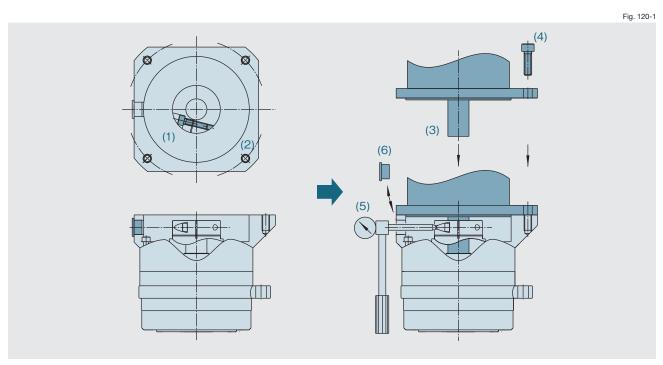
	_								
Bolt size		M2.5	МЗ	M4	M5	М6	M8	M10	M12
Tightoning torque	N⋅m	0.59	1.4	3.2	6.3	10.7	26.1	51.5	89.9
Tightening torque	kgf⋅m	0.06	0.14	0.32	0.64	1.09	2.66	5.25	9.17

*Recommended bolt name: JIS B 1176 Hexagon socket head bolt, Strength category: JIS B 1051 12.9 or higher Caution: Always tighten bolts at the tightening torques specified above.

Tighten the bolt onto the input shaft coupling. (Bolts or screws are mounted on the input shaft coupling upon delivery. Check the bolt size on the delivery specification drawing we provide.)

Bolt tightening torque

Table 120-2


Bolt size		М3	M4	M5	M6	M8	M10	M12
Tightening torque	N·m	2.0	4.5	9.0	15.3	37.2	73.5	128
	kgf·m	0.20	0.46	0.92	1.56	3.8	7.5	13.1

Caution: Always tighten the bolts at the tightening torque specified above. If the bolt is tightened at a torque below the specified torque, problems such as a slip may result. The bolt size may vary depending on the model and the shaft diameter of the mounted motor.

Two setscrews need to be tightened on Model No. 11. See dimensional outline drawing on page 019 (HPGP) and page 029 (HPG) for Model No. 11. Tighten the screws at the tightening torque specified below.

		Table 120-3			
Fixing bolt s	Fixing bolt size				
Tightoning torque	N·m	0.69			
Tightening torque	kgf⋅m	0.07			

(6) Insert the rubber cap provided. This completes the mounting work. (Model No. 11: Fasten screws with a gasket in two places)

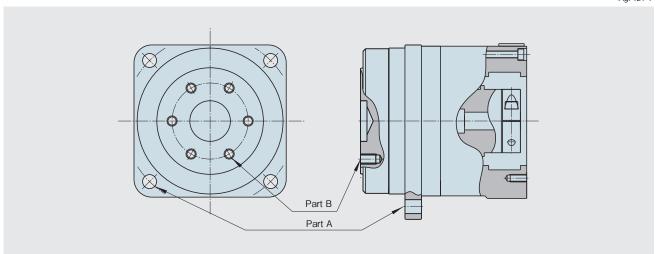
Assembly of speed reducer HPGP

HPG CSG-GH CSF-GH

Some models of the orthogonal shaft type weigh 20 to 60 kg. No tap for eyebolt is provided because the mounting orientation varies depending on the customer's need. When mounting the reducer, hoist it by sling work, and pay sufficient attention to safety. When assembling an HPG series product onto equipment, check the flatness of the mounting surface and any burrs on taps. Then clamp the flange (Part A in the diagram below) using the bolts.

Bolt* tightening torque for flange (Part A in the diagram below)

Table 121-1


Model		HPGP / HPG / CSG-GH / CSF-GH					HPF		
IVIO	uci	11	14	20	32	45/50	65	25	32
Number of bolts		4	4	4	4	4	4	12	12
Bolt size		M3	M5	M8	M10	M12	M16	M4	M5
Mounting PCD	mm	46	70	105	135	190	260	127	157
Tightening	N⋅m	1.4	6.3	26.1	51.5	103	255	4.5	9.0
torque	kgf⋅m	0.14	0.64	2.66	5.25	10.5	26.0	0.46	0.92
	N⋅m	26.3	110	428	868	2030	5180	531	1060
Transfer torque	kgf⋅m	2.69	11.3	43.6	88.6	207	528	54.2	108

^{*} Recommended bolts: JIS B 1176 "Hexagon socket head bolts." Strength classification 12.9 or higher in JIS B 1051.

■Load mounting onto output part

When mounting a load onto the output part, take the specification of the output shaft bearing into consideration. (See pages 114 to 115.)

Fig. 121-1

Product of output flange type

Bolt* tightening torque for output flange (Part B in the Fig. 121-1)

Table 121-2

Model		11	14	20	32	50	65
Number of bolts		4	8	8	8	8	8
Bolt size		M4	M4	M6	M8	M12	M16
Mounting PCD	mm	18	30	45	60	90	120
Timber and a second	N⋅m	4.5	4.5	15.3	37.2	128.4	319
Tightening torque	kgf⋅m	0.46	0.46	1.56	3.8	13.1	32.5
T	N⋅m	25.3	84	286	697	2407	5972
Transfer torque	kgf⋅m	2.58	8.6	29.2	71.2	245	609

^{*} Recommended bolts: JIS B 1176 "Hexagon socket head bolts." Strength classification 12.9 or higher in JIS B 1051.

Bolt* tightening torque for output flange (Part B in the Fig. 121-1)

Table 121-3

Model		11	14	20	32	50	65
Number of bolts		3	6	6	6	14	6
Bolt size		M4	M4	M6	M8	M8	M16
Mounting PCD	mm	18	30	45	60	100	120
Tieleterie e terrer	N·m	4.5	4.5	15.3	37.2	37.2	319
Tightening torque	kgf⋅m	0.46	0.46	1.56	3.8	3.80	32.5
	N⋅m	19.0	63	215	524	2036	4480
Transfer torque	kgf⋅m	1.9	6.5	21.9	53.4	207.8	457

^{*} Recommended bolts: JIS B 1176 "Hexagon socket head bolts." Strength classification 12.9 or higher in JIS B 1051.

Product of output flange type

Bolt* tightening torque for output flange (Part B in the Fig. 121-1)

Table 122-1

Model		14	20	32	45	65
Number of bolts		8	8	10	10	10
Bolt size		M4	M6	M8	M12	M16
Mounting PCD	mm	30	45	60	94	120
Timbtonia a tourus	N·m	4.5	15.3	37	128	319
Tightening torque	kgf⋅m	0.46	1.56	3.8	13.1	32.5
Transfer torque	N·m	84	287	867	3067	7477
	kgf⋅m	8.6	29.3	88.5	313	763

^{*} Recommended bolts: JIS B 1176 "Hexagon socket head bolts." Strength classification 12.9 or higher in JIS B 1051.

Bolt* tightening torque for output flange (Part B in the Fig. 121-1)

Table 122-2

Model		14	20	32	45	65
Number of bolts		6	6	6	16	8
Bolt size		M4	M6	M8	M8	M16
Mounting PCD	mm	30	45	60	100	120
Tieletenine teue	N⋅m	4.5	15.3	37.2	37.2	319
Tightening torque	kgf⋅m	0.46	1.56	3.80	3.80	32.5
Transfer town	N⋅m	63	215	524	2326	5981
Transfer torque	kgf∙m	6.5	21.9	53.4	237	610

^{*} Recommended bolts: JIS B 1176 "Hexagon socket head bolts." Strength classification 12.9 or higher in JIS B 1051.

Bolt* tightening torque for output flange (Part B in the Fig. 121-1)

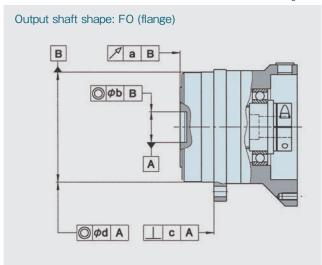
HPF

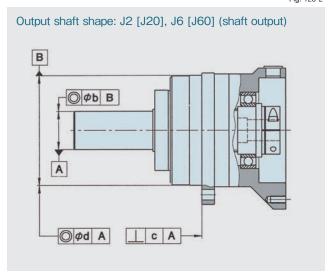
Table 122-3

		3 (•
Mo	odel	25	32
Number of bolts		12	12
Bolt size		M4	M5
Mounting PCD	mm	77	100
Tielder in a terror	N·m	4.5	9.0
Tightening torque	kgf⋅m	0.46	0.92
Transfer torque	N·m	322	675
	kgf·m	32.9	68.9

^{*} Recommended bolts: JIS B 1176 "Hexagon socket head bolts." Strength classification 12.9 or higher in JIS B 1051.

Product of output shaft type


Exercise caution and avoid applying an impact to the output shaft when mounting a pulley, pinion and other parts. An impact will deteriorate the speed reducer precision and may cause a failure.


■Mechanical precision

Using a high-precision cross roller bearing as its output shaft bearing, an output part with a high mechanical precision is realized. The mechanical precision of the output shaft and mounting flange are specified below.

Fig. 123-2

HPGP	HPG CSG-GH	CSF-GH		Table 123-1
Model	Planar runout of output flange a	Runout of spigot joint of output flange or output shaft b	Planar runout of mounting flange c	Runout of mounting spigot joint d
11	0.020	0.030	0.050	0.040
14	0.020	0.040	0.060	0.050
20	0.020	0.040	0.060	0.050
32	0.020	0.040	0.060	0.050

HPGP	HPG			Table 123-2
50	0.020	0.040	0.060	0.050
65	0.040	0.060	0.090	0.080

CSG-GH	CSF-GH			Table 123-3
45	0.020	0.040	0.060	0.050
65	0.020	0.040	0.060	0.050

	HPF				Table 123-4
-	25	0.020	0.040	0.060	0.050
	32	0.020	0.040	0.060	0.050

^{*} T.I.R.: Total indicator reading. Total reading on a dial gauge when the part to be measured is turned one turn.

(T.I.R.* Unit: mm)

Handling Explanation

Lubrication

Prevention of grease and oil leak

(Common to all models)

- Avoid using it with other grease.
- · A countermeasure for leakage is considered for the structure. However, please note that it is not complete depending on the application and operating condition. To completely implement the countermeasure for leakage, prepare the pan or seal separately.
- · Set the rubber cap part facing upward when installing to the speed reducer mounted horizontally.

(CSG/CSF-GH Series)

· When using the product at constant load or in one direction continuously, it may cause lubrication problems. Contact our sales office if the product will be used in this way.

Sealing mechanism

(Common to all models)

- · A countermeasure for leakage is considered for the input shaft. However, depending on the application, please take measures against oil leakage on the devise being installed side.
- A fluorine resin oil seal with a dust ripple (Model No. 11 of HPGP/HPG series is without dust ripple) in the output shaft, a sealed packing or an o-ring on each junction surface, and non-contact shielded bearing (customized specification is contact type: DDU type*) on the motor joint coupling part of gear head are used. On CSG/CSF-GH series, non-contact shielded bearing and a fluorine resin oil seal with a spring are used.
 - * DDU type: Bearing with a rubber contact seal on both sides
- It is recommended to change input side shielded bearing to DDU type if the motor is mounted below the reducer and run at constant load continuously or start and stop frequently.

(HPGP/HPG/HPF Series)

- Compared with the standard products, the efficiency of the shielded bearing on the input shaft side is slightly lowered in the DDU type (special products) of the HPGP/HPG series gear head. (See pages 099 to 109.)
- When assembling the HPGP/HPG series gear head and motor, apply the sealant to the mounting surface of the motor. (See page 120.)
- An oil seal without spring is used in the input shaft side of HPG series input shaft type and HPF series hollow shaft type. It can be changed to an oil seal with spring for improved seal reliability. However, the efficiency may become slightly lower (HPG series for Models 14 or higher).
- Do not remove the screw plug and seal cap of the HPG seires orthogonal shaft type (See page 067). Removing them may cause leakage of grease or deterioration in precision.

Lubricant

HPGP/HPG/HPF Series

The standard lubrication method for the HPGP/HPG/HPF series is greasing.

As products are greased and shipped, additional application of grease during assembly is not necessary. The grease replacement is not required within the range of the speed reducer life. By employing the planetary speed reducer mechanism and dedicated grease that excel in the theoretical efficiency, the high efficiency has been achieved.

Name of lubricant

Harmonic Grease® SK-2 specification (HPGP/HPG-14, 20, 32) Manufacturer: Harmonic Drive Systems Inc.

Base oil: Refined mineral oil Soap radical: Lithium soap Additive: Extreme pressure agent and other Standard: NLGI No. 2

Consistency: 265 to 295 at 25°C Dropping point: 198°C Product appearance: Green

EPNOC Grease AP (N) 2 specification (HPGP/HPG-11, 50, 65/HPF-25, 32) Manufacturer: Nippon Oil Co.

Base oil: Refined mineral oil Soap radical: Lithium soap Additive: Extreme pressure agent and other

Consistency: 282 at 25°C Dropping point: 200°C Product appearance: Light brown

Standard: NLGI No. 2

PYRONOC UNIVERSAL 00 specifications (Orthogonal shaft type) Manufacturer: Nippon Oil Co.

Base oil: Refined mineral oil Soap radical: Urea Standard: NLGI No. 00

Consistency: 420 at 25°C Dropping point: 250°C or higher Product appearance: Light yellow

Multemp AC-P specification (HPG Helical Gear Type) Manufacturer: Kyodo Yushi Co., Ltd.

Base oil: Composite hydrocarbon oil, diester Soap radical: Lithium soap Additives: Extreme pressure agent, other Product appearance: Black and viscous Standard: NLGI No. 2

Consistency: 280 at 25°C Dropping point: 200°C or higher

Ambient operating temperature range: -10°C to +40°C

Quality of the lubricant may deteriorate if the ambient operating temperature is high or low. Please contact our sales office or distributor

The value of the temperature rise depending on the heat radiation conditions of the speed reducer installation parts (housing) arranged by the customers and on the ambient temperature. It is appropriate to regard the surface temperature 70°C of the speed reducer as the reference upper limit.

CSG-GH/CSF-GH Series

The standard lubrication method for the CSG-GH/CSF-GH series is greasing.

As products are greased and shipped, additional application of grease during assembly is not necessary.

Name of lubricant

Harmonic Grease® SK-1A specification (Model No. 20, 32, 45, 65) Manufacturer: Harmonic Drive Systems Inc.

This has been developed as grease exclusively for HarmonicDrive® and is excellent in durability and efficiency compared to commercial general-purpose grease.

Base oil: Refined mineral oil Soan radical: Lithium soan Additive: Extreme pressure agent and other Standard: NLGI No. 2

Consistency: 265 to 295 at 25°C Dropping point: 197°C

Product appearance: Yellow

Harmonic Grease® SK-2 specification (Model No. 14)

Manufacturer: Harmonic Drive Systems Inc.

This has been developed exclusively for the compact HarmonicDrive® and is excellent in smoothness during wave generator rotation by liquefying extreme-pressure additive.

Base oil: Refined mineral oil Soap radical: Lithium soap Additive: Extreme pressure agent

and other Standard: NLGI No. 2 Consistency: 265 to 295 at 25°C Dropping point: 198°C

Product appearance: Green

Ambient operating temperature range: 0°C to +40°C

Quality of the lubricant may deteriorate if the ambient operating temperature is high or low. Please contact our sales office or distributor if this is the case.

The value of the temperature rise depending on the heat radiation conditions of the speed reducer installation parts (housing) arranged by the customers and on the ambient temperature. It is appropriate to regard the surface temperature 70°C of the speed reducer as the reference upper limit.

When to replace grease

Abrasion of the sliding parts of HarmonicDrive® is influenced by grease performance. Grease performance changes by temperature and deteriorates rapidly as the temperature rises. Therefore, the grease needs to be replaced earlier than usual. The graph on the right indicates the time to replace the grease from the relation between the grease temperature and the total number of rotations when the average load torque is equal to or less than the output torque at 2000 r/min. Obtain the time to replace the grease from the following calculation formula when the average load torque exceeds the rated torque at 2000 r/min.

Calculation formula when the average load torque exceeds the rated torque

Formula 125-1

$$L_{GT} = L_{GTn} \times \left(\frac{Tr}{T_{av}}\right)^3$$

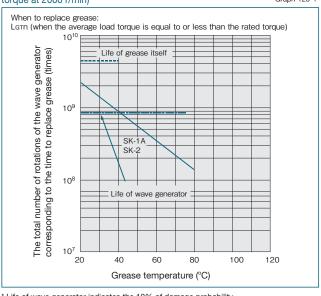

Symbols of formula

Table 125-1

	Lgт	Replacement timing if it is equal to output torque or more	Number of rotation	-
	GTn	Replacement timing if it is equal to output torque or less	Number of rotation	See Graph 125-1.
	Tr	Output torque at 2000 r/min	N·m, kgf·m	See the "Rating table" on pages 050 and 058.
ĺ	av	Average load torque on the output side		Calculation formula: See page 048.

When to replace grease:

Lette (when the average load torque is equal to or less than the output torque at 2000 r/min)

* Life of wave generator indicates the 10% of damage probability

Precautions when refilling with grease

Since the adverse effect may occur due to the refill or discharge amount of grease, such as grease leakage or increase in the starting torque. Strictly observe the following items.

- ■Note that the refill amount value listed in Table 125-2 is a reference value for refilling with grease once. Do not exceed the value significantly.
- Discharge the same amount of grease as the refill amount before refilling with grease. The adverse effect does not occur until 2 times of grease refill. For refilling with grease 3 times or more, be sure to discharge the same amount of grease. Use an air, etc. to discharge grease.

Reference value of grease refill amount for replacement Table 125-2

Model	14	20	32	45	65
Refill amount: g	0.8	3.2	6.6	11.6	78.6

Handling Explanation

■ Warranty

Products that are described in this catalog are warranted as follows:

Warranty period

Under the condition that the products are handled, used and maintained properly followed each item of the technical materials, the manuals, and this catalog, all the products are warranted against defects in workmanship and materials for the shorter period of either one year after delivery or 2,000 hours of operation time.

Warranty terms

All the products are warranted against defects in workmanship and materials for the warranted period. This limited warranty does not apply to any product that has been subject to:

- (1) User's misapplication, improper installation, inadequate maintenance, or misuse.
- (2) Disassembling, modification or repair by others than Harmonic Drive Systems, Inc.
- (3) Imperfection caused by the other than the products.
- (4) Disaster or others that does not belong to the responsibility of Harmonic Drive Systems, Inc.

Our liability shall be limited exclusively to repairing or replacing the product only found by Harmonic Drive Systems, Inc. to be defective.

Harmonic Drive Systems, Inc. shall not be liable for consequential damages of other equipment caused by the defective products, and shall not be liable for the incidental and consequential expenses and the labor costs for detaching and installing to the driven equipment

Discarding

When discarding a product, sort parts into different materials and dispose of the parts as industrial waste in accordance with the laws and regulations of municipalities. The materials of the parts can be classified into three categories.

- (1) Rubber parts: Oil seals, seal packings, rubber caps, seals of shielded bearings on input side (DDU type only)
- (2) Aluminum parts: Housings, motor flanges
- (3) Steel parts: Other parts

Trademark

"HarmonicDrive" is registered trademark of Harmonic Drive Systems Inc. products.

The academic or general nomenclature is "strain wave gearing".

For Safe Use

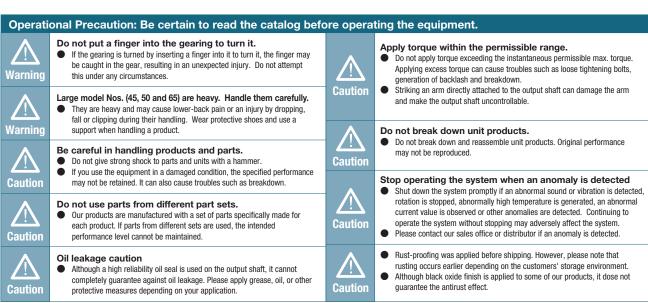
Warning: Means that improper use or handling could result in a risk of death or serious injury.

Caution: Means that improper use or handling could result in personal injury or damage to property.

Limited Applications

This product cannot be used for the following applications:

- * Space equipment
- * Aircraft equipment
- * Nuclear power equipment
- * Equipment and apparatus used in domestic homes


- * Vacuum equipment
- * Automotive equipment * Game equipment
- * Equipment that directly works on human bodies

- * Equipment for transport of humans
- * Equipment for use in a special environment

Please consult Harmonic Drive Systems beforehand when intending to use one of its product for the aforementioned applications.

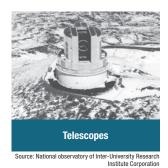
Install a safety device that avoids an accident even if output of this product becomes uncontrollable due to breakdown when using it in equipment that affects human lives and that may trigger serious damage.

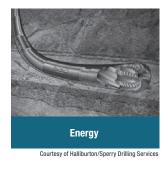
Design Precaution: Be certain to read the catalog when designing the equipment. Use only in a specified environment. Install the equipment in a specified manner. In case of using HarmonicDrive® and Hamonic Planetary® please ensure the Carry out assembly precisely in the specified order according to the catalog. following environmental conditions are complied with: Observe our recommended tightening methods (such as bolts used). Ambient temperature 0 to 40°C Operating the equipment without precise assembly can cause troubles such No splashing of water or oil as generation of vibration, reduction of life, deterioration of precision and Caution Caution Do not expose to corrosive or explosive gas No dust such as metal powder Use the specified lubricant. Install the equipment in a specified precision. Design and assemble parts to keep the recommended installation precision Using other lubricant than our recommended products can reduce the life. Replace the lubricant in a specified condition. Failure to keep the precision can cause troubles such as generation of Grease is sealed in a unit product. Caution Caution vibration, reduction of life, deterioration of precision and breakdown. Do not mix other kinds of grease.

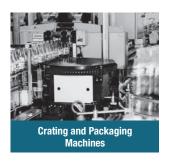
Handling Lubricant Precautions on handling lubricant Treatment of waste oil and containers Lubricant got in the eye can cause an inflammation. Wear protective glasses Treatment methods are obliged by law. Treat wastes appropriately to prevent it from getting in your eye when you handle it. according to the law. If you are unsure how to treat them, you should Lubricant coming in contact with the skin can cause an inflammation. Wear consult with the dealer before treating them. Do not apply pressure on an empty container. The container may blow up. protective gloves to prevent it from contacting your skin when you handle it. Caution Do not weld, heat, drill or cut the container. The remainder may ignite Do not eat it (to avoid diarrhea and vomiting). When you open the container, you might have your hand cut by it. Wear with an explosion. protective gloves. Keep lubricant off children. Storage Tightly plug the container after use to prevent intrusion of dusts and water. Avoid direct sunlight to store lubricant in a dark place If lubricant gets in your eye, you should wash your eye with clean water for Caution 15 minutes and submit to medical treatment. If lubricant comes in contact with your skin, you should thoroughly wash it with water and soan Discarding Warning If you swallowed it, you should immediately submit to medical treatment Please discard as industrial waste. without throwing it up by constraint.

Please discard as industrial waste when discarding

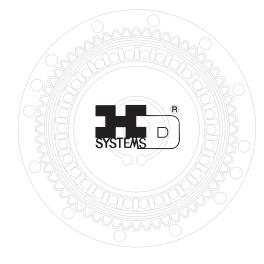
Major Applications of Our Products

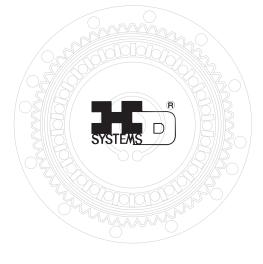


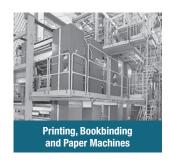



Processing Machines

Measurement, Analytical and Test Systems



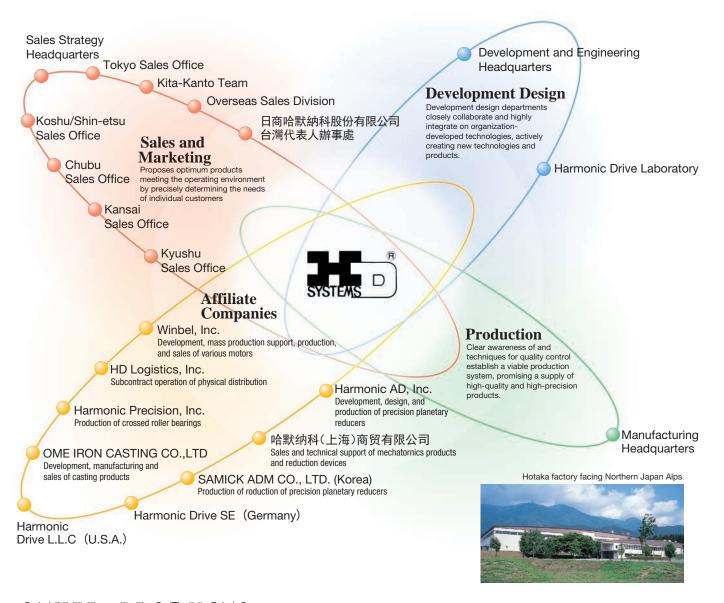








MEMO


MEMO

As a Specialist in Precision Control Field

Through close cooperation in areas of development, design, production and marketing, Harmonic Drive Systems creates unique products tailored to customer needs.

In 1995 and 1998, Harmonic Drive Systems respectively obtained approvals for ISO 9001 (International Quality Management Standard) and for ISO 14001 (International Environmental Management Systems) from TÜV Product Service, a German accreditation organization. The approvals signify global recognition of the quality assurance and environment management systems of Harmonic Drive Systems.

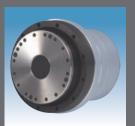
OTHER PRODUCTS

Harmonic Drive®

As "strain wave gearing", the HarmonicDrive® speed reducer features more precision motion control through a unique mechanism.

Beam Servo®

Galvano scanners are developed based on the small motors and optical sensor technology, which are researched by HarmonicDrive®. Smooth operation is realized by high response and precision of optical scanning.


Harmonic Linear®

The linear actuators compactly combining a precision screw and HarmonicDrive®. Versatile series are available for ultra precision positioning and high driving force.

Rotary motion

High-torque actuators that are optimally combined with each servo motor with HarmonicDrive® and excellent control characteristics.

Information desk for urgent repair and inquiry [Information desk for urgent repair request and technical consultation]

• TEL: CS department 0263 (83) 6812

Business hours: Monday ~ Friday 9:00~12:00 13:00~ 17:00 (Except Saturdays, Sundays, national holidays and our specified days off)

HarmonicPlanetary® HarmonicDrive® Harmonic Gearhead® HarmonicLinear® BEAM SERVO*

Registered Trademark in Japan

Certifications for ISO 14001 and ISO 9001 and obtained from TÜV Product Service GmbH

https://www.hds.co.jp/

	Head Office:	Ichigo Omori Building, 6-25-3 Minami-Ohi, Shinagawa-ku,Tokyo, Japan 140-0013 TEL: +81-3-5471-7800 FAX: +81-3-5471-7811
	Tokyo Office:	Ichigo Omori Building, 6-25-3 Minami-Ohi, Shinagawa-ku,Tokyo, Japan 140-0013 TEL: +81-3-5471-7830 FAX: +81-3-5471-7836
	Tokyo Office Kita-Kanto Team:	Ichigo Omori Building, 6-25-3 Minami-Ohi, Shinagawa-ku,Tokyo, Japan 140-0013 TEL: +81-3-6410-8485 FAX: +81-3-6410-8486
	Koshin Office:	5103-1 Hotakaariake Azumino-shi Nagano, Japan 399-8301 TEL: +81-263-81-5940 FAX: +81-263-50-5010
	Chu-bu Office:	TM21-2F 21 Terugaoka, Meito-ku, Nagoya-shi, Aichi, Japan 465-0042 TEL: +81-52-773-7451 FAX: +81-52-773-7462
	Kansai Office:	Shin-Osaka Ueno To-yo Building 3F, 7-4-17 Nishi-nakajima, Yodogawa-ku, Osaka-shi, Osaka, Japan 532-0011 TEL: +81-6-6885-5720 FAX: +81-6-6885-5725
	Kyushu Office:	NMF Hakata station-front Building 7F, 1-15-20 Hakata station-front, Hakata-ku, Fukuoka-shi, Fukuoka, Japan 812-0011 TEL: +81-92-451-7208 FAX: +81-92-481-2493
	Overseas Sales Division:	5103-1 Hotakaariake Azumino-shi Nagano, Japan 399-8301 TEL: +81-263-81-5950 FAX: +81-263-50-5010
	Hotaka Plant:	1856-1 Hotakamaki Azumino-shi Nagano, Japan 399-8305 TEL: +81-263-83-6800 FAX: +81-263-83-6901
	Harmonic Drive SE:	Hoenbergstrasse 14 D-65555 Limburg a.d. Lahn Germany TEL: +49-6431-5008-0 FAX: +49-6431-5008-119
	Harmonic Drive L.L.C:	42 Dunham Ridge, Beverly, Massachusetts 01915 U.S.A. TEL: +1-978-532-1800 FAX: +1-978-532-9406
"Harmania Driva®" is a trademant of Harmania Driva Customa Inc	I	

"HarmonicDrive®" is a trademark of Harmonic Drive Systems, Inc.
The academic or general nomenclature of our products "HarmonicDrive®" is "strain wave gearing."

This catalog is printed with vegetable ink.